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Abstract 

We present new simulation results , in which a computational model 
of interacting visual neurons simultaneously predicts the modula­
tion of spatial vision thresholds by focal visual attention, for five 
dual-task human psychophysics experiments. This new study com­
plements our previous findings that attention activates a winner­
take-all competition among early visual neurons within one cortical 
hypercolumn. This "intensified competition" hypothesis assumed 
that attention equally affects all neurons, and yielded two single­
unit predictions: an increase in gain and a sharpening of tuning 
with attention. While both effects have been separately observed 
in electrophysiology, no single-unit study has yet shown them si­
multaneously. Hence, we here explore whether our model could still 
predict our data if attention might only modulate neuronal gain, 
but do so non-uniformly across neurons and tasks. Specifically, we 
investigate whether modulating the gain of only the neurons that 
are loudest , best-tuned, or most informative about the stimulus, 
or of all neurons equally but in a task-dependent manner, may ac­
count for the data. We find that none of these hypotheses yields 
predictions as plausible as the intensified competition hypothesis, 
hence providing additional support for our original findings. 

1 INTRODUCTION 

Psychophysical studies as well as introspection indicate that we are not blind out­
side the focus of attention, and that we can perform simple judgments on objects 
not being attended to [1], though those judgments are less accurate than in the 



presence of attention [2, 3]. While attention thus appears not to be mandatory for 
early vision, there is mounting experimental evidence from single-neuron electro­
physiology [4, 5, 6, 7, 8, 9, 10], human psychophysics [11 , 12, 13, 14,3, 2, 15, 16] and 
human functional imaging experiments [17, 18, 19, 20, 21, 22, 23] that focal visual 
attention modulates, top-down, activity in early sensory processing areas. In the 
visual domain, this modulation can be either spatially-defined (i.e., neuronal activ­
ity only at the retinotopic location attended to is modulated) or feature-based (i.e., 
neurons with stimulus preference matching the stimulus attended to are enhanced 
throughout the visual field), or a combination of both [7, 10, 24]. 

Computationally, the modulatory effect of attention has been described as enhanced 
gain [8, 10], biased [4] or intensified [14, 2] competition, enhanced spatial resolution 
[3], sharpened neuronal tuning [5, 25] or as modulated background activity [19], 
effective stimulus strength [26] or noise [15]. One theoretical difficulty in trying 
to understand the modulatory effect of attention in computational terms is that, 
although attention profoundly alters visual perception, it is not equally important 
to all aspects of vision. While electrophysiology demonstrates "increased firing 
rates" with attention for a given task, psychophysics show "improved discrimination 
thresholds" on some other tasks, and functional magnetic resonance imaging (fMRI) 
reports "increased activation" for yet other tasks, the computational mechanism at 
the origin of these observations remains largely unknown and controversial. 

While most existing theories are associated to a specific body of data, and a spe­
cific experimental task used to engage attention in a given experiment, we have 
recently proposed a unified computational account [2] that spans five such tasks (32 
thresholds under two attentional conditions, i.e., 64 datapoints in total). This the­
ory predicts that attention activates a winner-take-all competition among neurons 
tuned to different orientations within a single hyper column in primary visual cortex 
(area VI). It is rooted in new information-theoretic advances [27], which allowed us 
to quantitatively relate single-unit activity in a computational model to human psy­
chophysical thresholds. A consequence of our "intensified competition hypothesis" 
is that attention both increases the gain of early visual neurons (by a factor 3.3), 
and sharpens their tuning for the orientation (by 40%) and spatial frequency (by 
30%). While gain modulation has been observed in some of the single-unit studies 
mentioned above [8, 10] (although much smaller effects are typically reported, on the 
order of 10-15%, probably because these studies do not use dual-task paradigms and 
thus poorly engage the attention of the animal towards or away from the stimulus 
of interest), and tuning modulation has been observed in other single-unit studies 
[5, 25], both gain and tuning modulation have not been simultaneously observed in 
a single electrophysiological set of experiments [10]. 

In the present study, we thus investigate alternatives to our intensified competi­
tion hypothesis which only involve gain modulation. Our previous results [2] have 
shown that both increased gain and sharper tuning were necessary to simultane­
ously account for our five pattern discrimination tasks, if those modulatory effects 
were to equally affect all visual neurons at the location of the stimulus and to be 
equal for all tasks. Thus, we here extend our computational search space under two 
new hypotheses: First, we investigate whether attention might only modulate the 
gain of selected sub-populations of neurons (responding the loudest, best tuned, or 
most informative about the stimulus) in a task-independent manner. Second, we 
investigate whether attention might equally modulate the gain of all visual neurons 
responding to the stimulus, but in a task-dependent manner. Thus, the goal of 
the present study is to determine, using new computational simulations, whether 
the modulatory effect of attention on early visual processing might be explained by 
gain-only modulations, if such modulations are allowed to be sufficiently complex 



(affecting only select visual neurons, or task-dependent). Although attention cer­
tainly affects most stages of visual processing, we here continue to focus on early 
vision, as it is widely justified by electrophysiological and fMRI evidence that some 
modulation does happen very early in the processing hierarchy [5, 8, 9, 23]. 

2 PSYCHOPHYSICAL DATA 

Our recent study [2] measured psychophysical thresholds for three pattern discrim­
ination tasks (contrast, orientation and spatial frequency discriminations), and two 
spatial masking tasks (32 thresholds) . We used a dual-task paradigm to measure 
thresholds either when attention was fully available to the task of interest (presented 
in the near periphery), or when it was poorly available because engaged elsewhere 
by a concurrent attention-demanding task (a letter discrimination task at the center 
of the display). The results are summarized in Fig. 1 and [2]. 
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Figure 1: Psychophysical data from Lee et ai. Central targets appeared at 0 - 0.8° 
eccentricity and measured 0.4° across. Peripheral targets appeared for 250 ms at 4° 
eccentricity, in a circular aperture of 1.50 • They were either sinusoidal gratings (B, 
C) or vertical stripes whose luminance profile was given by the 6th derivative of a 
Gaussian (A, D, E) . Mask patterns were generated by superimposing 100 Gabor 
filters , positioned randomly within the circular aperture (A, D, E). Thresholds 
were established with an adaptive staircase method (80 trials per block). A complex 
pattern of effects is observed, with a strong modulation of orientation and spatial 
frequency discriminat ions (B, C) , smaller modulation of contrast discriminations 
(A) , and modulation of contrast masking that depends on stimulus configurations 
(D, E). These complex observations can be simultaneously accounted for by our 
computational model of one hypercolumn in primary visual cortex. 



3 COMPUTATIONAL MODEL 

Linear filters Divisive inhibition Decision 

The model developed to quantita­
tively account for this data comprises 
three successive stages [14, 27]. In the 
first stage, a bank of Gabor-like linear 
filters (12 orientations and 5 spatial 
scales) analyzes a given visual loca­
tion, similarly to a cortical hyper col­
umn. In the second stage, filters non­
linearly interact through both a self­
excitation component, and a divisive 
inhibition component that is derived 

from a pool of similarly-tuned units. With E)."o being the linear response from a 
unit tuned to spatial period A and orientation (), the response R)."o after interactions 
is given by (see [27] for additional details): 

R - (A.E)."o) ' + B 
).,,0 - (S)O + L W)."o(A',()') (A.E)..!,O')O ' 

(1) 

()..! ,O') EA x 8 

where: W (A' ()') = (_ (log(A') -log(A))2 _ (()' - ())2) 
)., ,0, exp 2A2 2A2 

)., 0 
(2) 

is a 2D Gaussian weighting function centered around (A, ()) whose widths are deter­
mined by the scalars Ao and A).,. The neurons are assumed to be noisy, with noise 
variance V{o given by a generalized Poisson model: V{o = (3(R)."o + <:). 

The third stage relates activity in the population of interacting noisy units to behav­
ioral discrimination performance. To allow us to quantitatively predict thresholds 
from neural activity for any task, our decision stage assumes that observers perform 
close to an unbiased efficient statistic, that is, the best possible estimator (in the 
statistical estimation sense) of the characteristics of the stimulus given the noisy 
neuronal responses. This methodology (described further in [27]) allows us to quan­
titatively compute thresholds in any behavioral situation, and eliminates the need 
for task-dependent assumptions about the decision strategy used by the observers. 

4 RESULTS and DISCUSSION 

The 10 free model parameters (Fig. 2) were automatically adjusted to best fit 
the psychophysical data from all experiments, using a multidimensional down­
hill simplex with simulated annealing overhead (see [27]) , running on our 16-
CPU Linux Beowulf system (16 x 733 MHz, 4 GB RAM, 0.5 TB disk; see 
http://iLab . usc. edu/beo/). Parameters were simultaneously adjusted for both 
attentional conditions; that is, the total fit error was the sum of the error obtained 
with the baseline set of parameters on the poorly attended data, and of the error 
obtained with the same parameters plus some attentional perturbation on the fully 
attended data. Thus, no bias was given to any of the two attentional conditions. 

For the "separate fits" (Fig. 2), all parameters were allowed to differ with atten­
tion [2], while only the interaction parameters b, 8) could differ in the "intensified 
competition" case. The "loudest filter" was the one responding loudest to the en­
tire visual pattern presented (stimulus + mask), the "best-tuned filter" was that 
responding best to the stimulus component alone, and the "most informative fil­
ter" was that for which the Fisher information about the stimulus was highest (see 
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Figure 2: Attentional modulation hypot heses and corresponding model parameters. 
See next page for the corresponding model predictions on our five tasks, for the 
hypotheses shown. The middle column shows which parameters were allowed to 
differ with attention, and t he best-fit values for both attent ional conditions. 
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Figure 3: Model predictions for the different attent ional modulation hypotheses 
studied. The different rows correspond to the different attentional manipulations 
studied, as labeled in the previous figure. Ratings (stars below the plots) were 
derived from the residual error of the fits . 



[14, 27]). Finally, in the "task-dependent" case, the gain of all filters was affected 
equally (parameter ')'), but with three different values for the contrast (discrimi­
nation and masking), orientation and spatial frequency tasks. Overall, very good 
fits were obtained in the "separate fits" and "intensified competition" conditions 
(as previously reported) , as well as in the "most informative filter" and "task­
dependent" conditions (Fig. 3) , while the two remaining hypotheses yielded very 
poor predictions of orientation and spatial frequency discriminations. In the "most 
informative filter" case, the dipper in the contrast increment thresholds was missing 
because the nonlinear response function of the neurons converged to a power law 
rather than the usually observed sigmoid [27]; thus, this hypothesis lost some of 
its appeal because of its lower biological plausibility. More importantly, a careful 
analysis of the very promising results for the "task-dependent" case also revealed 
their low biological plausibility, with a gain modulation in excess of 20-fold being 
necessary to explain the orientation discrimination data (Fig. 2). 

In summary, we found that none of the simpler (gain only) attentional manipula­
tions studied here could explain as well the psychophysical data as our previous ma­
nipulation, "intensified competition," which implied that attention both increases 
the gain and sharpens the tuning of early visual neurons. Two of the four new 
manipulations studied yielded good quantitative model predictions: affecting the 
gain of the filter most informative about the target stimulus, and affecting the gain 
of all filters in a task-dependent manner. In both cases, however, some of the in­
ternal model parameters associated with the fits were biologically unrealistic, thus 
reducing the plausibility of these two hypotheses. In all manipulations studied, the 
greatest difficulty was in trying to account for the orientation and spatial frequency 
discrimination data without unrealistically high gain changes (greater than 20-fold). 
Our results hence provide additional evidence for the hypothesis that sharpening 
of tuning may be necessary to account for these thresholds, as was originally sug­
gested by our separate fits and our intensified competition hypothesis and has been 
recently supported by new investigations [16]. 
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