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Abstract

Recent biological experimental findings have shown that the synap-
tic plasticity depends on the relative timing of the pre- and post-
synaptic spikes which determines whether Long Term Potentiation
(LTP) occurs or Long Term Depression (LTD) does. The synaptic
plasticity has been called “Temporally Asymmetric Hebbian plas-
ticity (TAH)”. Many authors have numerically shown that spatio-
temporal patterns can be stored in neural networks. However, the
mathematical mechanism for storage of the spatio-temporal pat-
terns is still unknown, especially the effects of LTD. In this paper,
we employ a simple neural network model and show that inter-
ference of LTP and LTD disappears in a sparse coding scheme.
On the other hand, it is known that the covariance learning is in-
dispensable for storing sparse patterns. We also show that TAH
qualitatively has the same effect as the covariance learning when
spatio-temporal patterns are embedded in the network.

1 Introduction

Recent biological experimental findings have indicated that the synaptic plasticity
depends on the relative timing of the pre- and post- synaptic spikes which deter-
mines whether Long Term Potentiation (LTP) occurs or Long Term Depression
(LTD) does [1, 2, 3]. LTP occurs when a presynaptic firing precedes a postsynaptic
one by no more than about 20ms. In contrast, LTD occurs when a presynaptic
firing follows a postsynaptic one. A rapid transition occurs between LTP and LTD
within a time difference of a few ms. Such a learning rule is called “Temporally
Asymmetric Hebbian learning (TAH)” [4, 5] or “Spike Timing Dependent synaptic
Plasticity (STDP)” [6]. Many authors have numerically shown that spatio-temporal
patterns can be stored in neural networks [6, 7, 8, 9, 10, 11]. Song et al. discussed
the variablity of spike generation about the network consisting of spiking neurons
using TAH [6]. They found that the condition that the area of LTD was slightly
larger than that of LTP was indispensable of the stability. Namely, the balance of
LTP and LTD is crucial. Yoshioka also discussed the associative memory network



consisting of spiking neurons using TAH [11]. He found that the area of LTP was
needed to be equal to that of LTD for stable retrieval. Munro and Hernandez nu-
merically showed that a network can retrieve spatio-temporal patterns even in a
noisy environment owing to LTD [9]. However, they did not discuss the reason why
TAH was effective in terms of the storage and retrieval of the spatio-temporal pat-
terns. Since TAH has not only the effect of LTP but that of LTD, the interference
of LTP and LTD may prevent retrieval of the patterns. To investigate this unknown
mathematical mechanism for retrieval, we employ an associative memory network
consisting of binary neurons. To simplify the dynamics of internal potential enables
us to analyze the details of the retrieval process. We use a learning rule that is
the similar formulation in the previous works. We show the mechanism that the
spatio-temporal patterns can be retrieved in this network.

There are many works concerned with associative memory networks that store
spatio-temporal patterns by the covariance learning [12, 13]. Many biological find-
ings imply that sparse coding schemes may be used in the brain [14]. It is well-
known that the covariance learning is indispensable when the sparse patterns are
embedded in a network as attractors [15, 16]. The information on the firing rate
for the stored patterns is not indispensable for TAH, although it is indispensable
for the covariance learning. We theoretically show that TAH qualitatively has the
same effect as the covariance learning when the spatio-temporal patterns are em-
bedded in the network. This means that the difference in spike times induces LTP
or LTD, and the effect of the firing rate information can be canceled out by this
spike time difference. We conclude that this is the reason why TAH doesn’t require
the information on the firing rate for the stored patterns.

2 Model

We investigate a network consisting of N binary neurons that are connected mutu-
ally. In this paper, we consider the case of N → ∞. We use a neuronal model with
binary state, {0, 1}. We also use discrete time steps and the following synchronous
updating rule,

ui(t) =

N
∑

j=1

Jijxj(t), (1)

xi(t + 1) = Θ(ui(t) − θ), (2)

Θ(u) =

{

1, u ≥ 0
0, u < 0,

(3)

where xi(t) is the state of the i-th neuron at time t, ui(t) its internal potential,
and θ a uniform threshold. If the i-th neuron fires at time t, its state is xi(t) = 1;
otherwise, xi(t) = 0. The specific value of the threshold is discussed later. Jij is
the synaptic weight from the j-th neuron to the i-th neuron. Each element ξµ

i of
the µ-th memory pattern ξ

µ = (ξµ
1 , ξµ

2 , · · · , ξµ
N ) is generated independently by,

Prob[ξµ
i = 1] = 1 − Prob[ξµ

i = 0] = f. (4)

The expectation of ξ
µ is E[ξµ

i ] = f , and thus, f can be considered as the mean firing
rate of the memory pattern. The memory pattern is “sparse” when f → 0, and
this coding scheme is called “sparse coding”. The synaptic weight Jij follows the
synaptic plasticity that depends on the difference in spike times between the i-th
(post-) and j-th (pre-) neurons. The difference determines whether LTP occurs or
LTD does. Such a learning rule is called “Temporally Asymmetric Hebbian learning
(TAH)” or “Spike Timing Dependent synaptic Plasticity (STDP)”. This biological



experimental finding indicates that LTP or LTD is induced when the difference in
the pre- and post-synaptic spike times falls within about 20ms [3] (Figure 1(a)).
We define that one time step in equations (1)–(3) corresponds to 20ms in Figure
1(a), and a time duration within 20ms is ignored (Figure 1(b)). Figure 1(b) shows
that LTP occurs when the j-th neuron fires one time step before the i-th neuron
does, ξµ+1

i = ξµ
j = 1, and that LTD occurs when the j-th neuron fires one time step

after the i-th neuron does, ξµ−1
i = ξµ

j = 1. The previous work indicates the blance

of LTP and LTD is significant [6]. Therefore, we define that the area of LTP is the
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Figure 1: Temporally Asymmetric Hebbian plasticity. (a): The result of biological
finding [3] and (b): the learning rule in our model. LTP occurs when the j-th
neuron fires one time step before the i-th one. On the contrary, LTD occurs when
the j-th neuron fires one time step after the i-th one. Synaptic weight Jij is followed
by this rule.

same as that of LTD, and that the amplitude of LTP is also the same as that of
LTD. On the basis of these definitions, we employ the following learning rule,

Jij =
1

Nf(1 − f)

p
∑

µ=1

(ξµ+1
i ξµ

j − ξµ−1
i ξµ

j ). (5)

The number of memory patterns is p = αN where α is defined as the “loading
rate”. There is a critical value αC of loading rate. If the loading rate is larger than
αC, the pattern sequence becomes unstable. αC is called the “storage capacity”.
The previous works have shown that the learning method of equation (5) can store
spatio-temporal patterns, that is, pattern sequences [9, 10]. We show that p memory

patterns are retrieved periodically like ξ
1 → ξ

2 → · · · → ξ
p → ξ

1 → · · ·. In other
words, ξ

1 is retrieved at t = 1, ξ
2 at t = 2, and ξ

1 at t = p + 1.

Here, we discuss the value of threshold θ. It is well-known that the threshold
value should be controlled according to the progress of the retrieval process time-
dependently [15, 16]. One candidate algorithm for controlling the threshold value
is to maintain the mean firing rate of the network at that of memory pattern, f , as
follows,

f =
1

N

N
∑

i=1

xi(t) =
1

N

N
∑

i=1

Θ(ui(t) − θ(t)). (6)

It is known that the obtained threshold value is nearly optimal, since it approxi-
mately gives a maximal storage capacity value [16].

3 Theory

Many neural network models that store and retrieve sequential patterns by TAH
have been discussed by many authors [7, 8, 9, 10]. They have numerically shown that



TAH is effective for storing pattern sequences. For example, Munro and Hernandez
showed that their model could retrieve a stored pattern sequence even in a noisy
environment [9]. However, the previous works have not mentioned the reason why
TAH is effective. Exploring such a mechanism is the main purpose of our paper.

Here, we discuss the mechanism that the network learned by TAH can store and
retrieve sequential patterns. Before providing details of the retrieval process, we
discuss a simple situation where the number of memory patterns is very small
relative to the number of neurons, i.e., p ∼ O(1). Let the state at time t be the
same as the t-th memory pattern: x(t) = ξ

t. Then, the internal potential ui(t) of
the equation (1) is given by,

ui(t) = ξt+1
i − ξt−1

i . (7)

ui(t) depends on two independent random variables, ξt+1
i and ξt−1

i , according to the

equation (4). The first term ξt+1
i of the equation (7) is a signal term for the recall of

the pattern ξt+1, which is designed to be retrieved at time t+1, and the second term
ξt−1
i can interfere in retrieval of ξt+1. According to the equation (7), ui(t) takes a

value of 0, −1 or +1. ξ t−1
i = 1 means that the interference of LTD exists. If the

threshold θ(t) is set between 0 and +1, ξt+1
i = 0 isn’t influenced by the interference

of ξt−1
i = 1. When ξt+1

i = 1 and ξt−1
i = 1, the interference does influence the

retrieval of ξ
t+1. We consider the probability distribution of the internal potential

ui(t) to examine how the interference of LTD influences the retrieval of ξt+1. The
probability of ξ t+1

i = 1 and ξt−1
i = 1 is f2, that of ξt+1

i = 1 and ξt−1
i = 0 is f − f2,

that of ξt+1
i = 0 and ξt−1

i = 1 is f − f2, and that of ξt+1
i = 0 and ξt−1

i = 0 is
(1 − f)2. Then the probability distribution of ui(t) is given by this equation

Prob(ui(t)) = (f−f2)δ(ui(t)−1)+(1−2f +2f2)δ(ui(t))+(f −f2)δ(ui(t)+1). (8)

Since the threshold θ(t) is set between 0 and +1, the state xi(t + 1) is 1 with
probability f − f2 and 0 with 1 − f + f2. The overlap between the state x(t + 1)

and the memory pattern ξt+1 is given by,

mt+1(t + 1) =
1

Nf(1 − f)

N
∑

i=1

(ξt+1
i − f)xi(t + 1) = 1 − f. (9)

In a sparse limit, f → 0, the probability of ξ t+1
i = 1 and ξt−1

i = 1 approaches 0.
This means that the interference of LTD disappears in a sparse limit, and the model
can retrieve the next pattern ξ

t+1. Then the overlap mt+1(t + 1) approaches 1.

Next, we discuss whether the information on the firing rate is indispensable for
TAH or not. To investigate this, we consider the case that the number of memory
patterns is extensively large, i.e., p ∼ O(N ). Using the equation (9), the internal
potential ui(t) of the i-th neuron at time t is represented as,

ui(t) = (ξt+1
i − ξt−1

i )mt(t) + zi(t), (10)

zi(t) =

p
∑

µ6=t

(ξµ+1
i − ξµ−1

i )mµ(t). (11)

zi(t) is called the “cross-talk noise”, which represents contributions from non-target

patterns excluding ξt−1 and prevents the target pattern ξt+1 from being retrieved.
This disappeared in the finite loading case, p ∼ O(1).

It is well-known that the covariance learning is indispensable when the sparse pat-
terns are embedded in a network as attractors [15, 16]. Under sparse coding schemes,



unless the covariance learning is employed, the cross-talk noise does diverge in the
large N limit. Consequently, the patterns can not be stored. The information on
the firing rate for the stored patterns is not indispensable for TAH, although it is
indispensable for the covariance learning. We use the method of the “statistical
neurodynamics” [17, 18] to examine whether the variance of cross-talk noise di-
verges or not. If a pattern sequence can be stored, the cross-talk noise is obeyed
by a Gaussian distribution with mean 0 and time-dependent variance σ2(t). Oth-
erwise, σ2(t) diverges. Since σ2(t) is changing over time, it is necessary to control
a threshold at an appropriate value at each time step [15, 16]. According to the
statistical neurodynamics, we obtain the recursive equations for the overlap mt(t)
between the network state x(t) and the target pattern ξt and the variance σ2(t).
The details of the derivation will be shown elsewhere. Here, we show the recursive
equations for mt(t) and σ2(t),

mt(t) =
1 − 2f

2
erf(φ0) −

1 − f

2
erf(φ1) +

f

2
erf(φ2), (12)

σ2(t) =

t
∑

a=0

2(a+1)C(a+1)αq(t − a)

a
∏

b=1

U2(t − b + 1), (13)

U (t) =
1√

2πσ(t − 1)
{(1 − 2f + 2f2)e−φ2

0 + f(1 − f)(e−φ2

1 + e−φ2

2 )}, (14)

q(t) =
1

2

(

1 − (1 − 2f + 2f2)erf(φ0) − f(1 − f)(erf(φ1) + erf(φ2))
)

, (15)

erf(y) =
2√
π

∫ y

0

exp (−u2)du, bCa =
b!

a!(b − a)!
, a! = a × (a − 1) × · · · × 1,

φ0 =
θ(t − 1)√
2σ(t − 1)

, φ1 =
−mt−1(t − 1) + θ(t − 1)√

2σ(t − 1)
, φ2 =

mt−1(t − 1) + θ(t − 1)√
2σ(t − 1)

.

These equations reveal that the variance σ2(t) of cross-talk noise does not diverge
as long as a pattern sequence can be retrieved. This result means that TAH quali-
tatively has the same effect as the covariance learning.

Next, we discuss the mechanism that the variance of cross-talk noise does not di-
verge. Let us consider the equation (5). Synaptic weight Jij from j-th neuron to
i-th neuron is also derived as follows,

Jij =
1

Nf(1 − f)

p
∑

µ=1

(ξµ+1
i ξµ

j − ξµ−1
i ξµ

j ) =
1

Nf(1 − f)

p
∑

µ=1

(ξµ
i ξµ−1

j − ξµ
i ξµ+1

j )

=
1

Nf(1 − f)

p
∑

µ=1

ξµ
i

{

(ξµ−1
j − f) − (ξµ+1

j − f)
}

(16)

This equation implies that TAH has the information on the firing rate of the memory
patterns when spatio-temporal patterns are embedded in a network. Therefore,
the variance of cross-talk noise doesn’t diverge, and this is another factor for the
network learned by TAH to store and retrieve a pattern sequence. We conclude
that the difference in spike times induces LTP or LTD, and the effect of the firing
rate information can be canceled out by this spike times difference.

4 Results

We investigate the property of our model and examine the following two conditions:
a fixed threshold and a time-dependent threshold, using the statistical neurodynam-
ics and computer simulations.



Figure 2 shows how the overlap mt(t) and the mean firing rate of the network,
x̄(t) = 1

N

∑

i xi(t), depend on the loading rate α when the mean firing rate of
the memory pattern is f = 0.1 and the threshold is θ = 0.52, where the storage
capacity is maximum with respect to the threshold θ. The stored pattern sequence
can be retrieved when the initial overlap m1(1) is greater than the critical value
mC . The lower line indicates how the critical initial overlap mC depends on the
loading rate α. In other words, the lower line represents the basin of attraction
for the retrieved sequence. The upper line denotes a steady value of overlap mt(t)
when the pattern sequence is retrieved. mt(t) is obtained by setting the initial

state to the first memory pattern: x(1) = ξ
1. In this case, the storage capacity is

αC = 0.27. The dashed line shows a steady value of the normalized mean firing rate
of network, x̄(t)/f , for the pattern sequence. The data points and error bars indicate
the results of the computer simulations with 5000 neurons: N = 5000. The former
indicates mean values and the latter does variances in 10 trials. Since the results
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overlap at the stationary state (the upper line). The
dashed line shows the mean firing rate of the network
divided firing rate which is 0.1. The threshold is 0.52
and the number of neurons is 5000. The data points and
error bars show the means and variances, respectively, in
10 trials of computer simulations. The storage capacity
is 0.27.

of the computer simulations coincide with those of the statistical neurodynamics,
hereafter, we show the results only of the statistical neurodynamics.

Next, we examine the threshold control scheme in the equation (6), where the
threshold is controlled to maintain the mean firing rate of the network at f . q(t)

in equation (15) is equal to the mean firing rate because q(t) = 1
N

∑N
i=1(xi(t))

2 =
1
N

∑N
i=1 xi(t) under the condition xi(t) = {0, 1}. Thus, the threshold is adjusted to

satisfy the following equation,

f = q(t) =
1

2

(

1 − (1 − 2f + 2f2)erf(φ0) − f(1 − f)(erf(φ1) + erf(φ2))
)

. (17)

Figure 3 shows the overlap mt(t) as a function of loading rate α with f = 0.1. The
storage capacity is αC = 0.234. The basin of attraction becomes larger than that
of the fixed threshold condition, θ = 0.52 (Figure 2). Thus, the network becomes
robust against noise. This means that even if the initial state x(1) is different from

the first memory pattern ξ
1, that is, the state includes a lot of noise, the pattern

sequence can be retrieved.
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Figure 3 !!The critical overlap (the lower line) and the
overlap at the stationary state (the upper line) when
the threshold is changing over time to maintain mean
firing rate of the network at f . The dashed line shows
the mean firing rates of the network divided firing rate
which is 0.1. The basin of attraction become larger than
that of the fixed threshold condition: Figure 2.

Finally, we discuss how the storage capacity depends on the firing rate f of the
memory pattern. It is known that the storage capacity diverges as 1

f | log f | in a

sparse limit, f → 0 [19, 20]. Therefore, we investigate the asymptotic property



of the storage capacity in a sparse limit. Figure 4 shows how the storage capacity
depends on the firing rate where the threshold is controlled to maintain the network
activity at f (symbol ◦). The storage capacity diverges as 1

f | log f | in a sparse limit.
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Figure 4 !!The storage capacity as a function of f in
the case of maintaining activity at f (symbol ◦). Ths
storage capacity diverges as 1

f | log f |
in a sparse limit.

5 Discussion

Using a simple neural network model, we have discussed the mechanism that TAH
enables the network to store and retrieve a pattern sequence. First, we showed that
the interference of LTP and LTD disappeared in a sparse coding scheme. This is
a factor to enable the network to store and retrieve a pattern sequence. Next, we
showed the mechanism that TAH qualitatively had the same effect as the covariance
learning by analyzing the stability of the stored pattern sequence and the retrieval
process by means of the statistical neurodynamics. Consequently, the variance of
cross-talk noise didn’t diverge, and this is another factor for the network learned by
TAH to store and retrieve a pattern sequence. We conclude that the difference in
spike times induces LTP or LTD, and the effect of the firing rate information can
be canceled out by this spike times difference. We investigated the property of our
model. To improve the retrieval property of the basin of attraction, we introduced
a threshold control algorithm where a threshold value was adjusted to maintain the
mean firing rate of the network at that of a memory pattern. As a result, we found
that this scheme enlarged the basin of attraction, and that the network became
robust against noise. We also found that the loading rate diverged as 1

f | log f | in a

sparse limit, f → 0.

Here, we compare the storage capacity of our model with that of the model using
the covariance learning (Figure 5). The dynamical equations of the model using the
covariance learning is derived by Kitano and Aoyagi [13]. We calculate the storage
capacity αCOV

C from their dynamical equations and compare these of our model,
αTAH

C , by the ratio of αTAH
C /αCOV

C . The threshold control method is the same as
in this paper. As f decreases, the ratio of storage capacities approaches 0.5. The
contribution of LTD reduces the storage capacity of our model to half. Therefore,
in terms of the storage capacity, the covariance learning is better than TAH. But, as
we discussed previously, the information of the firing rate is indispensable in TAH.
In biological systems, to get the information of the firing rate is difficult.
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