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Abstract

We present a sequential Monte Carlo method applied to additive
noise compensation for robust speech recognition in time-varying
noise. The method generates a set of samples according to the prior
distribution given by clean speech models and noise prior evolved
from previous estimation. An explicit model representing noise ef-
fects on speech features is used, so that an extended Kalman filter
is constructed for each sample, generating the updated continuous
state estimate as the estimation of the noise parameter, and predic-
tion likelihood for weighting each sample. Minimum mean square
error (MMSE) inference of the time-varying noise parameter is car-
ried out over these samples by fusion the estimation of samples ac-
cording to their weights. A residual resampling selection step and
a Metropolis-Hastings smoothing step are used to improve calcula-
tion efficiency. Experiments were conducted on speech recognition
in simulated non-stationary noises, where noise power changed ar-
tificially, and highly non-stationary Machinegun noise. In all the
experiments carried out, we observed that the method can have sig-
nificant recognition performance improvement, over that achieved
by noise compensation with stationary noise assumption.

1 Introduction

Speech recognition in noise has been considered to be essential for its real applica-
tions. There have been active research efforts in this area. Among many approaches,
model-based approach assumes explicit models representing noise effects on speech
features. In this approach, most researches are focused on stationary or slow-varying
noise conditions. In this situation, environment noise parameters are often esti-
mated before speech recognition from a small set of environment adaptation data.
The estimated environment noise parameters are then used to compensate noise
effects in the feature or model space for recognition of noisy speech.

However, it is well-known that noise statistics may vary during recognition. In
this situation, the noise parameters estimated prior to speech recognition of the
utterances is possibly not relevant to the subsequent frames of input speech if en-
vironment changes.



A number of techniques have been proposed to compensate time-varying noise ef-
fects. They can be categorized into two approaches. In the first approach, time-
varying environment sources are modeled by Hidden Markov Models (HMM) or
Gaussian mixtures that were trained by prior measurement of environments, so
that noise compensation is a task of identification of the underlying state sequences
of the noise HMMs, e.g., in [1], by maximum a posterior (MAP) decision. This ap-
proach requires making a model representing different conditions of environments
(signal-to-noise ratio, types of noise, etc.), so that statistics at some states or mix-
tures obtained before speech recognition are close to the real testing environments.
In the second approach, environment model parameters are assumed to be time-
varying, so it is not only an inference problem but also related to environment
statistics estimation during speech recognition. The parameters can be estimated
by Maximum Likelihood estimation, e.g., sequential EM algorithm [2][3][4]. They
can also be estimated by Bayesian methods. In the Bayesian methods, all relevant
information on the set of environment parameters and speech parameters, which are
denoted as Θ(t) at frame t, is included in the posterior distribution given observa-
tion sequence Y (0 : t), i.e., p(Θ(t)|Y (0 : t)). Except for a few cases including linear
Gaussian state space model (Kalman filter), it is formidable to evaluate the distri-
bution updating analytically. Approximation techniques are required. For example,
in [5], a Laplace transform is used to approximate the joint distribution of speech
and noise parameters by vector Taylor series. The approximated joint distribution
can give analytical formula for posterior distribution updating.

We report an alternative approach for Bayesian estimation and compensation of
noise effects on speech features. The method is based on sequential Monte Carlo
method [6]. In the method, a set of samples is generated hierarchically from the prior
distribution given by speech models. A state space model representing noise effects
on speech features is used explicitly, and an extended Kalman filter (EKF) is con-
structed in each sample. The prediction likelihood of the EKF in each sample gives
its weight for selection, smoothing, and inference of the time-varying noise param-
eter, so that noise compensation is carried out afterwards. Since noise parameter
estimation, noise compensation and speech recognition are carried out frame-by-
frame, we denote this approach as sequential noise compensation.

2 Speech and noise model

Our work is on speech features derived from Mel Frequency Cepstral Coefficients
(MFCC). It is generated by transforming signal power into log-spectral domain, and
finally, by discrete Cosine transform (DCT) to the cepstral domain. The following
derivation of the algorithm is in log-spectral domain. Let t denote frame (time)
index.

In our work, speech and noise are respectively modeled by HMMs and a Gaussian
mixture. For speech recognition in stationary additive noise, the following for-
mula [4] has been shown to be effective in compensating noise effects. For Gaussian
mixture kt at state st, the Log-Add method transforms the mean vector µl

stkt
of

the Gaussian mixture by,

µ̂l
stkt

= µl
stkt

+ log(1 + exp(µl
n − µl

stkt
)) (1)

where µl
n is the mean vector in the noise model. st ∈ {1, · · · , S}, kt ∈ {1, · · · , M}.

S and M each denote the number of states in speech models and the number of
mixtures at each state. Superscript l indicates that parameters are in the log-
spectral domain.

After the transformation, the mean vector µ̂l
stkt

is further transformed by DCT,



and then plugged into speech models for recognition of noisy speech. In case of
time-varying noise, the µl

n should be a function of time, i.e., µl
n(t). Accordingly,

the compensated mean is µ̂l
stkt

(t).
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Figure 1: The graphical model representation of the dependences of the speech and
noise model parameters. st and kt each denote the state and Gaussian mixture
at frame t in speech models. µl

stkt
(t) and µl

n(t) each denote the speech and noise

parameter. Y l(t) is the noisy speech observation.

The following analysis can be viewed in Figure 1. In Gaussian mixture kt at state st

of speech model, speech parameter µl
stkt

(t) is assumed to be distributed in Gaussian

with mean µl
stkt

and variance Σl
stkt

. On the other hand, since the environment
parameter is assumed to be time varying, the evolution of the environment mean
vector can be modeled by a random walk function, i.e.,

µl
n(t) = µl

n(t − 1) + v(t) (2)

where v(t) is the environment driving noise in Gaussian distribution with zero mean
and variance V .

Then, we have,

p(st, kt, µ
l
stkt

(t), µl
n(t)|st−1, kt−1, µ

l
st−1kt−1

(t − 1), µl
n(t − 1))

= ast−1st
pstkt

N(µl
stkt

(t); µl
stkt

, Σl
stkt

)N(µl
n(t); µl

n(t − 1), V ) (3)

where ast−1st
is the state transition probability from st−1 to st, and pstkt

is the
mixture weight. The above formula gives the prior distribution of the set of speech
and noise model parameter Θ(t) = {st, kt, µ

l
stkt

(t), µl
n(t)}.

Furthermore, given observation Y l(t), assume that the transformation by (1) has
modeling and measurement uncertainty in Gaussian distribution, i.e.,

Y l(t) = µl
stkt

(t) + log (1 + exp (µl
n(t) − µl

stkt
(t))) + wstkt

(t) (4)

where wstkt
(t) is Gaussian with zero mean and variance Σl

stkt
, i.e., N(·; 0, Σl

stkt
).

Thus, the likelihood of observation Y l(t) at state st and mixture kt is

p(Y l(t)|Θ(t)) = N(Y l(t); µl
stkt

(t) + log (1 + exp (µl
n(t) − µl

stkt
(t))), Σl

stkt
) (5)



Refereeing to (3) and (5), the posterior distribution of Θ(t) given Y l(t) is

p(st, kt, µ
l
stkt

(t), µl
n(t)|Y l(t)) ∝

p(Y l(t)|Θ(t))ast−1st
pstkt

N(µl
stkt

(t); µl
stkt

, Σl
stkt

)N(µl
n(t); µl

n(t − 1), V ) (6)

The time-varying noise parameter is estimated by MMSE, given as,

µ̂l
n(t) =

∫
µl

n
(t)

µl
n(t)

∑
st,kt

∫
µl

stkt
(t)

p(Θ(t)|Y l(0 : t))dµl
stkt

(t)dµl
n(t) (7)

However, it is difficult to obtain the posterior distribution p(Θ(t)|Y l(0 : t)) ana-
lytically, since p(µl

stkt
(t), µl

n(t)|Y l(t)) is non-Gaussian in µl
stkt

(t) and µl
n(t) due to

the non-linearity in (4). It is thus difficult, if possible, to assign conjugate prior
of µl

n(t) to the likelihood function p(Y l(t)|Θ(t)). Another difficulty is that the
speech state and mixture sequence is hidden in (7). We thus rely on the solution
by computational Bayesian approach [6].

3 Time-varying noise parameter estimation by sequential

Monte Carlo method

We apply the sequential Monte Carlo method [6] for posterior distribution updat-
ing. At each frame t, a proposal importance distribution is sampled whose target
is the posterior distribution in (7), and it is implemented by sampling from lower
distributions in hierarchy. The method goes through the sampling, selection, and
smoothing steps frame-by-frame. MMSE inference of the time-varying noise param-
eter is a by-product of the steps, carried out after the smoothing step.

In the sampling step, the prior distribution given by speech models is
set to the proposal importance distribution, i.e., q(Θ(t)|Θ(t − 1)) =
ast−1st

pstkt
N(µl

stkt
(t); µl

stkt
, Σl

stkt
). The samples are then generated by sampling

hierarchically of the prior distribution described as follows: set i = 1 and perform
the following steps:

1. sample s
(i)
t ∼ a

s
(i)
t−1

st

2. sample k
(i)
t ∼ p

s
(i)
t

kt

3. sample µ
l(i)

s
(i)
t

k
(i)
t

(t) ∼ N(; µl

s
(i)
t

k
(i)
t

, Σl

s
(i)
t

k
(i)
t

), and set i = i + 1

4. repeat step 1 to 3 until i = N

where superscript (i) denotes the index of samples and N denotes the number of
samples. Each sample represents certain speech and noise parameter, which is

denoted as Θ(i)(t) = (s
(i)
t , k

(i)
t , µ

l(i)

s
(i)
t

k
(i)
t

(t), µ
l(i)
n (t)). The weight of each sample is

given by
∏t

τ=1
p(Θ(τ)(i)|Y l(τ))

q(Θ(τ)(i)|Θ(τ−1)(i))
. Refereeing to (6), the weight is calculated by

β(i)(t) = p(Y l(t)|Θ(i)(t))N(µl(i)
n (t); µl(i)

n (t − 1), V )β̌(i)(t − 1) (8)

where β̌(i)(t − 1) is the sample weight from previous frame. The remaining part
in the right side of above equation, in fact, represents the prediction likelihood of
the state space model given by (2) and (4) for each sample (i). This likelihood
can be obtained analytically since after linearization of (4) with respect to µl

n(t) at



µ
l(i)
n (t−1), an extended Kalman filter (EKF) can be obtained, where the prediction

likelihood of the EKF gives the weight, and the updated continuous state of EKF

gives µ
l(i)
n (t).

In practice, after the above sampling step, the weights of all but several samples may
become insignificant. Given the fixed number of samples, this will results in degener-
acy of the estimation, where not only some computational resources are wasted, but
also estimation might be biased because of losing detailed information on some parts
important to the parameter estimation. A selection step by residual resampling [6]
is adopted after the sampling step. The method avoids the degeneracy by discard-
ing those samples with insignificant weights, and in order to keep the number of the
samples constant, samples with significant weights are duplicated. Accordingly, the
weights after the selection step are also proportionally redistributed. Denote the
set of samples after the selection step as Θ̃(t) = {Θ̃(i)(t); i = 1 · · ·N} with weights

β̃(t) = {β̃(i)(t); i = 1 · · ·N}.

After the selection step at frame t, these N samples are distributed approximately
according to the posterior distribution in (7). However, the discrete nature of
the approximation can lead to a skewed importance weights distribution, where
the extreme case is all the samples have the same Θ̃(t) estimated. A Metropolis-
Hastings smoothing [7] step is introduced in each sample where the step involves

sampling a candidate Θ?(i)(t) given the current Θ̃(i)(t) according to the proposal

importance distribution q(Θ?(t)|Θ̃(i)(t)). The Markov chain then moves towards

Θ?(i)(t) with acceptance possibility as min{1,
p(Θ?(i)|Y l(t))q(Θ̃(i)|Θ?(i))

p(Θ̃(i)|Y l(t))q(Θ?(i)|Θ̃(i))
}, otherwise it

remains at Θ̃(i). To simplify calculation, we assume that the importance distribu-
tion q(Θ?(t)|Θ̃(i)(t)) is symmetric, and after some mathematical manipulation, it

is shown that the acceptance possibility is given by min{1,
β?(i)(t)

β̃(i)(t)
}. Denote the

obtained samples as Θ̌(t) = {Θ̌(i)(t); i = 1 · · ·N} with weights β̌(t) = {β̌(i)(t); i =
1 · · ·N}.

Noise parameter µl
n(t) is estimated via MMSE over the samples, i.e.,

µ̂l
n(t) =

N∑
i=1

β̌(i)(t)∑N
j=1 β̌(j)(t)

µ̌l(i)
n (t)

where µ̌
l(i)
n (t) is the updated continuous state of the EKF in the sample after the

smoothing step. Once the estimate µ̂l
n(t) has been obtained, it is plugged into (1)

to do non-linear transformation of clean speech models.

4 Experimental results

4.1 Experimental setup

Experiments were performed on the TI-Digits database down-sampled to 16kHz.
Five hundred clean speech utterances from 15 speakers and 111 utterances unseen
in the training set were used for training and testing, respectively. Digits and
silence were respectively modeled by 10-state and 3-state whole word HMMs with
4 diagonal Gaussian mixtures in each state.

The window size was 25.0ms with a 10.0ms shift. Twenty-six filter banks were used
in the binning stage. The features were MFCC + ∆ MFCC. The baseline system
had a 98.7% Word Accuracy under clean conditions.



We compared three systems. The first was the baseline trained on clean speech with-
out noise compensation, and the second was the system with noise compensation by
(1) assuming stationary noise [4]. They were each denoted as Baseline and Station-
ary Compensation. The sequential method was un-supervised, i.e., without training
transcript, and it was denoted according to the number of samples and variance of
the environment driving noise V . Four seconds of contaminating noise was used in
each experiment to obtain noise mean vector µl

n in (1) for Stationary Compensa-
tion. It was also for initialization of µl

n(0) in the sequential method. The initial

µ
l(i)
n (0) for each sample was sampled from N(µl

n(0), 0.01) + N(µl
n(0) + ζ(0), 10.0),

where ζ(0) was flat distribution in [−1.0, 9.0].

4.2 Speech recognition in simulated non-stationary noise

White noise signal was multiplied by a Chirp signal and a rectangular signal, so that
the noise power of the contaminating White noise changed continuously, denoted
as experiment A, and dramatically, denoted as experiment B. As a result, signal-
to-noise ratio (SNR) of the contaminating noise ranged from 0dB to 20.4dB. We
plotted the noise power in 12th filter bank versus frames in Figure 2, together with
the estimated noise power by the sequential method with number of samples set to
120 and environment driving noise variance set to 0.0001. As a comparison, we also
plotted the noise power and its estimate by the method with the same number of
samples but larger driving noise variance to 0.001.

By Figure 2 and Figure 3, we have the following observations. First, the method
can track the evolution of the noise power. Second, the larger driving noise variance
V will make faster convergence but larger estimation error of the method. In terms
of recognition performance, Table 1 shows that the method can effectively improve
system robustness to the time-varying noise. For example, with 60 samples, and
the environment driving noise variance V set to 0.001, the method can improve
word accuracy from 75.30% achieved by “Stationary Compensation”, to 94.28% in
experiment A. The table also shows that, the word accuracies can be improved
by increasing number of samples. For example, given environment driving noise
variance V set to 0.0001, increasing number of samples from 60 to 120, can improve
word accuracy from 77.11% to 85.84% in experiment B.

Table 1: Word Accuracy (in %) in simulated non-stationary noises, achieved by
the sequential Monte Carlo method in comparison with baseline without noise com-
pensation, denoted as Baseline, and noise compensation assuming stationary noise,
denoted as Stationary Compensation.

Experiment Baseline Stationary # samples = 60 # samples = 120
Compensation V V

0.001 0.0001 0.001 0.0001
A 48.19 75.30 94.28 93.98 94.28 94.58
B 53.01 78.01 82.23 77.11 85.84 85.84

4.3 Speech recognition in real noise

In this experiment, speech signals were contaminated by highly non-stationary Ma-
chinegun noise in different SNRs. The number of samples was set to 120, and the
environment driving noise variance V was set to 0.0001. Recognition performances
are shown in Table 2, together with “Baseline” and “Stationary Compensation”.



Figure 2: Estimation of the time-varying parameter µl
n(t) by the sequential Monte

Carlo method at 12th filter bank in experiment A. Number of samples is 120.
Environment driving noise variance is 0.0001. Solid curve is the true noise power.
Dash-dotted curve is the estimated noise power.

It is observed that, in all SNR conditions, the method can further improve sys-
tem performance, compared to that obtained by “Stationary Compensation”, over
“Baseline”. For example, in 8.86dB SNR, the method can improve word accuracy
from 75.60% by “Stationary Compensation” to 83.13%. As a whole, the method
can have a relative 39.9% word error rate reduction compared to “Stationary Com-
pensation”.

Table 2: Word Accuracy (in %) in Machinegun noise, achieved by the sequential
Monte Carlo method in comparison with baseline without noise compensation, de-
noted as Baseline, and noise compensation assuming stationary noise, denoted as
Stationary Compensation.

SNR (dB) Baseline Stationary Compensation #samples = 120, V = 0.0001
28.86 90.36 92.77 97.59
14.88 64.46 76.81 88.25
8.86 56.02 75.60 83.13
1.63 50.0 68.98 72.89

5 Summary

We have presented a sequential Monte Carlo method for Bayesian estimation of
time-varying noise parameter, which is for sequential noise compensation applied to
robust speech recognition. The method uses samples to approximate the posterior
distribution of the additive noise and speech parameters given observation sequence.



Figure 3: Estimation of the time-varying parameter µl
n(t) by the sequential Monte

Carlo method at 12th filter bank in experiment A. Number of samples is 120.
Environment driving noise variance is 0.001. Solid curve is the true noise power.
Dash-dotted curve is the estimated noise power.

Once the noise parameter has been inferred, it is plugged into a non-linear trans-
formation of clean speech models. Experiments conducted on digits recognition in
simulated non-stationary noises and real noises have shown that the method is very
effective to improve system robustness to time-varying additive noise.

References

[1] A. Varga and R.K. Moore, “Hidden markov model decomposition of speech and noise,”
in ICASSP, 1990, pp. 845–848.

[2] N.S. Kim, “Nonstationary environment compensation based on sequential estimation,”
IEEE Signal Processing Letters, vol. 5, no. 3, March 1998.

[3] K. Yao, K. K. Paliwal, and S. Nakamura, “Sequential noise compensation by a sequen-
tial kullback proximal algorithm,” in EUROSPEECH, 2001, pp. 1139–1142, extended
paper submitted for publication.

[4] K. Yao, B. E. Shi, S. Nakamura, and Z. Cao, “Residual noise compensation by a
sequential em algorithm for robust speech recognition in nonstationary noise,” in
ICSLP, 2000, vol. 1, pp. 770–773.

[5] B. Frey, L. Deng, A. Acero, and T. Kristjansson, “Algonquin: Iterating laplace’s
method to remove multiple types of acoustic distortion for robust speech recognition,”
in EUROSPEECH, 2001, pp. 901–904.

[6] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamic systems,” J.
Am. Stat. Assoc, vol. 93, pp. 1032–1044, 1998.

[7] W. K. Hastings, “Monte carlo sampling methods using markov chains and their appli-
cations,” Biometrika, vol. 57, pp. 97–109, 1970.


