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Abstract 

Almost two decades ago, Hopfield [1] showed that networks of 
highly reduced model neurons can exhibit multiple attracting fixed 
points, thus providing a substrate for associative memory. It is still 
not clear, however, whether realistic neuronal networks can support 
multiple attractors. The main difficulty is that neuronal networks 
in vivo exhibit a stable background state at low firing rate, typ­
ically a few Hz. Embedding attractor is easy; doing so without 
destabilizing the background is not. Previous work [2 , 3] focused 
on the sparse coding limit, in which a vanishingly small number of 
neurons are involved in any memory. Here we investigate the case 
in which the number of neurons involved in a memory scales with 
the number of neurons in the network. In contrast to the sparse 
coding limit, we find that multiple attractors can co-exist robustly 
with a stable background state. Mean field theory is used to under­
stand how the behavior of the network scales with its parameters, 
and simulations with analog neurons are presented. 

One of the most important features of the nervous system is its ability to perform 
associative memory. It is generally believed that associative memory is implemented 
using attractor networks - experimental studies point in that direction [4- 7], and 
there are virtually no competing theoretical models. Perhaps surprisingly, however, 
it is still an open theoretical question whether attractors can exist in realistic neu­
ronal networks. The "realistic" feature that is probably hardest to capture is the 
steady firing at low rates - the background state - that is observed throughout the 
intact nervous system [8- 13]. The reason it is difficult to build an attractor network 
that is stable at low firing rates, at least in the sparse coding limit, is as follows 
[2,3]: 

Attractor networks are constructed by strengthening recurrent connections among 
sub-populations of neurons. The strengthening must be large enough that neurons 
within a sub-population can sustain a high firing rate state, but not so large that the 
sub-population can be spontaneously active. This implies that the neuronal gain 
functions - the firing rate of the post-synaptic neurons as a function of the average 
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firing rate of the pre-synaptic neurons - must be sigmoidal: small at low firing rate 
to provide stability, high at intermediate firing rate to provide a threshold (at an 
unstable equilibrium), and low again at high firing rate to provide saturation and 
a stable attractor. In other words, a requirement for the co-existence of a stable 
background state and multiple attractors is that the gain function of the excitatory 
neurons be super linear at the observed background rates of a few Hz [2,3]. However 
- and this is where the problem lies - above a few Hz most realistic gain function 
are nearly linear or sublinear (see, for example, Fig. Bl of [14]). 

The superlinearity requirement rests on the implicit assumption that the activity 
of the sub-population involved in a memory does not affect the other neurons in 
the network. While this assumption is valid in the sparse coding limit , it breaks 
down in realistic networks containing both excitatory and inhibitory neurons. In 
such networks, activity among excitatory cells results in inhibitory feedback. This 
feedback, if powerful enough, can stabilize attractors even without a saturating 
nonlinearity, essentially by stabilizing the equilibrium (above considered unstable) 
on the steep part of the gain function. The price one pays, though, is that a 
reasonable fraction of the neurons must be involved in each of the memories, which 
takes us away from the sparse coding limit and thus reduces network capacity [15]. 

1 The model 

A relatively good description of neuronal networks is provided by synaptically cou­
pled, conductance-based neurons. However, because communication is via action 
potentials, such networks are difficult to analyze. An alternative is to model neu­
rons by their firing rates. While this is unlikely to capture the full temporal network 
dynamics [16], it is useful for studying equilibria. In such simplified models, the 
equilibrium firing rate of a neuron is a function of the firing rates of all the other 
neurons in the network. Letting VEi and VIi denote the firing rates of the excita­
tory and inhibitory neurons, respectively, and assuming that synaptic input sums 
linearly, the equilibrium equations may be written 

¢Ei (~Af;EVEj' ~Af;'V'j) 

¢;; (~AifVEj, ~ Ai!V,j) . 

(la) 

(lb) 

Here ¢E and ¢I are the excitatory and inhibitory gain functions and Aij determines 
the connection strength from neuron j to neuron i. The gain functions can, in 
principle, be derived from conductance-based model equations [17]. 

Our goal here is to determine under what conditions Eq. (1) allows both attractors 
and a stable state at low firing rate. To accomplish this we will use mean field 
theory. While this theory could be applied to the full set of equations, to reduce 
complexity we make a number of simplifications. First, we let the inhibitory neurons 
be completely homogeneous (¢Ii independent of i and connectivity to and from 
inhibitory neurons all-to-all and uniform). In that case, Eq. (lb) becomes simply 
VI = ¢(VE' VI) where VE and VI are the average firing rates of the excitatory and 
inhibitory neurons. Solving for VI and inserting the resulting expression into Eq. (la) 

results in the expression VEi = ¢Ei(LjAijEVEj,AEIVI(VE)) where A EI == LjAijI. 



Second, we let cP Ei have the form cP Ei (u, v) = cP E( Xi + bu - ev) where Xi is a Gaussian 
random variable, and similarly for cPT (except with different constants band e and 
no dependence on i). Finally, we assume that cPT is threshold linear and the network 
operates in a regime in which the inhibitory firing rate is above zero. With these 
simplifications, and a trivial redefinition of constants, Eq. (la) becomes 

(2) 

We have dropped the sub and superscript E, since Eq. (2) refers exclusively to 
excitatory neurons, defined v to be the average firing rate, v == N-1 Li Vi, and 
rescaled parameters. We let the function cP be 0(1), so f3 can be interpreted as the 
gain. The parameter p is the number of memories. The reduction from Eq. (1) to 
Eq. (2) was done solely to simplify the analysis; the techniques we will use apply 
equally well to the general case, Eq. (1). 

Note that the gain function in Eq. (2) decreases with increasing average firing rate, 
since it's argument is -(1 + a)v and a is positive. This negative dependence on v 
arises because we are working in the large coupling regime in which excitation and 
inhibition are balanced [18,19]. The negative coupling to firing rate has important 
consequences for stability, as we will see below. 

We let the connectivity matrix have the form 

Here N is the number of excitatory neurons; Cij , which regulates the degree of 
connectivity, is lie with probability e and and 0 with probability (1 - e) (except 
Cii = 0, meaning no autapses); g(z) is an 0(1) clipping function that keeps weights 
from falling below zero or getting too large; (g) is the mean value of g(z), defined 
in Eq. (4) below; W i j , which corresponds to background connectivity, is a random 
matrix whose elements are Gaussian distributed with mean 1 and variance 8w2 ; and 
Jij produces the attractors. We will follow the Hopfield prescription and write Jij 

as 

(3) 

where f is the coupling strength among neurons involved in the memories , and the 
patterns TJ",i determine which neurons participate in each memory. The TJ",i are a 
set of uncorrelated vectors with zero mean and unit variance. In simulations we 
use TJ",i = [(1 - 1)11]1/2 with probability 1 and -(f 1(1 - IW /2 with probability 
1 - I, so a fraction 1 of the neurons are involved in each memory. Other choices 
are unlikely to significantly change our results. 

2 Mean field equations 

The main difficulty in deriving the mean field equations from Eq. (2) is separating 
the signal from the noise. Our first step in this endeavor is to analyze the noise 



associated with the clipped weights. To do this we break Cijg(Wij + Jij ) into two 
pieces: Cijg(Wij + Jij) = (g) + (g')Jij + bCij where 

The angle brackets around 9 represent an average over the distributions of W ij and 
Jij, and a prime denotes a derivative. In the large p limit, bCij can be treated as a 
random matrix whose main role is to increase the effective noise [20]. The mean of 
bCij is zero and its variance normalized to (g)2 / c, which we denote (Y2, is given by 

For large p, the elements of Jij are Gaussian with zero mean and variance E2, so 
the averages involving 9 can be written 

(4) 

where k can be either an exponent or a prime and the "I" in g(1 + z) corresponds 
to the mean of Wij . In our simulations we use the clipping function g(z) = z if z is 
between 0 and 2, 0 if z ::::; 0 and 2 if z ;::: 2. 

Our main assumptions in the development of a mean field theory are that 
L;#i bCijvj is a Gaussian random variable, and that bCij and Vj are independent. 
Consequently, 

where (v2 ) == N- 1 L;i v; is the second moment of the firing rate. Letting 8i be a 
zero mean Gaussian random variable with variance 82 == (Y2 (v2) / cN, we can use the 
above assumptions along with the definition of Jij , Eq. (3), to write Eq. (20) as 

(5) 

We have defined the clipped memory strength, Ee, as Ee == E(g')/(g). While it is 
not totally obvious from the above equations, it can be shown that both (Y2 and 
Ee become independent of E for large E. This makes network behavior robust to 
changes in E, the strength of the memories, so long as E is large. 

Derivation ofthe mean field equations from Eq. (5) follow standard methods [21,22]. 
For definiteness we take ¢(x) to be threshold linear: ¢(x) = max(O, x). For the case 
of one active memory, the mean field equations may then be written in the form 
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(6b) 

(6c) 

(6d) 

where a == piN is the load parameter, Xo and B6/P are the mean and variance of 
of Xi (see Eq. (2)), and, recall, j is the fraction of neurons that participate in each 
memory. The functions Fk and flFk are defined by 

100 d~ k 2 
-z (27r )1/2 (z +~) exp( -~ /2) 

Fdw + z) - Fk(Z) . 

For large negative z, Fk(z) vanishes as exp(-z2/2) , while for large positive z, 
Fk(Z) --+ zk /k!. 

The average firing rate, v, and strength of the memory, m == N-1 2::i rJljVj (taken 
without loss of generality to be the overlap with pattern 1), are given in terms of z 
and was 

Xo 
v 

m 

3 Results 

The mean field equations can be understood by examining Eqs. (6a) and (6b). The 
first of these, Eq. (6a), is a rescaled form of the equation for the overlap, m. (From 
the definition of flFt given above, it can be seen that m is proportional to w for 
small w). This equation always has a solution at w = 0 (and thus m = 0) , which 
corresponds to a background state with no memories active. If {3Ec is large enough, 
there is a second solution with w (and thus m) greater than zero. This second 
solution corresponds to a memory. The other relevant equation, Eq. (6b), describes 
the behavior of the mean firing rate. This equation looks complicated only because 
the noise - the variation in firing rate from neuron to neuron - must be determined 
self-consistently. 

The solutions to Eqs. (6a) and (6b) are plotted in Fig. 1 in the z-w plane. The solid 
lines, including the horizontal line at w = 0, represents the solution to Eq. (6a), the 
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Figure 1: Graphical solution of Eqs. (6a) 
and (6b). Solid lines, including the one at 
w = 0: solution to Eq. (6a). Dashed line: 
solution to Eq. (6b). The arrows indicate 
approximate flow directions: vertical ar­
rows indicate time evolution of w at fixed 
z; horizontal arrows indicate time evolu­
tion of z at fixed w. The black squares 
show potentially stable fixed points. Note 
the exchange of stability to the right of 
the solid curve, indicating that intersec­
tions too far to the right will be unstable. 

dashed line the solution to Eq. (6b), and their intersections solutions to both. While 
stability cannot be inferred from the equilibrium equations, a reasonable assumption 
is that the evolution equations for the firing rates , at least near an equilibrium, have 
the form Tdvi/dt = ¢i - Vi. In that case, the arrows represent flow directions, and 
we see that there are potentially stable equilibria at the intersections marked by 
the solid squares. 

Note that in the sparse coding limit, f ---+ 0, z is independent of w, meaning that the 
mean firing rate, v , is independent of the overlap, m. In this limit there can be no 
feedback to inhibitory neurons , and thus no chance for stabilization. In terms of Fig. 
1, the effect of letting f ---+ 0 is to make the dashed line vertical. This eliminates the 
possibility of the upper stable equilibrium (the solid square at w > 0), and returns 
us to the situation where a superlinear gain function is required for attractors to be 
embedded, as discussed in the introduction. 

Two important conclusions can be drawn from Fig. 1. First, the attractors can be 
stable even though the gain functions never saturate (recall that we used threshold­
linear gain functions). The stabilization mechanism is feedback to inhibitory neu­
rons, via the -(1 + a)v term in Eq. (2). This feedback is what makes the dashed 
line in Fig. 1 bend, allowing a stable equilibrium at w > O. Second, if the dashed 
line shifts to the right relative to the solid line, the background becomes destabi­
lized. This is because there is an exchange of stability, as indicated by the arrows. 
Thus, there is a tradeoff: w, and thus the mean firing rate of the memory neurons, 
can be increased by shifting the dashed line up or to the right , but eventually the 
background becomes destabilized. Shifting the dashed line to the left , on the other 
hand, will eventually eliminate the solution at w > 0, destroying all attractors but 
the background. 

For fixed load parameter Ct, fraction of neurons involved in a memory, f, and degree 
of connectivity, c, there are three parameters that have a large effect on the location 
of the equilibria in Fig. 1: the gain, {3, the clipped memory strength, fe, and the 
degree of heterogeneity in individual neurons, Bo. The effect of the first two can 
be seen in Fig. 2, which shows a stability plot in the f-{3 plane, determined by 
numerically solving the the equations Tdvi/dt = ¢i - Vi (see Eq. (2)). The filled 
circles indicate regions where memories were embedded without destabilizing the 
background, open circles indicate regions where no memories could be embedded, 
and xs indicate regions where the background was unstable. As discussed above, 
fe becomes approximately independent of the strength of the memories , f, when 
f becomes large. This is seen in Fig. 2A, in which network behavior stabilizes 
when f becomes larger than about 4; increasing f beyond 8 would, presumably, 



produce no surprises. There is some sensitivity to gain, (3 : when f > 4, memories 
co-existed with a stable background for (3 in a ±15% range. Although not shown, 
the same was true of eo: increasing it by about 20% eliminated the attractors; 
decreasing it by the same amount destabilized the background. However, more 
detailed analysis indicates that the stability region gets larger as the number of 
neurons in the network, N, increases. This is because fluctuations destabilize the 
background, and those fluctuations fall off as N - 1 / 2 . 
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Figure 2: A. Stability diagram, found by solving the set of equations Tdv;/dt = 
cPi - Vi with the argument of cPi given in Eq. (2). Filled circles: memories co-exist 
with a stable background (also outlined with solid lines); open circles: memories 
could not be embedded; x s: background was unstable. The average background 
rate, when the background was stable, was around 3 Hz. The network parameters 
were eo = 6, Xo = 1.5, a = 0.5, c = 0.3, 0: = 2.5%, and 8w = 0.3. 2000 neurons 
were used in the simulations. These parameters led to an effective gain, pl /2 (3fc , of 
about 10, which is consistent with the gain in large networks in which each neuron 
receives "-'5-10,000 inputs. B . Plot of firing rate of memory neurons , m, when the 
memory was active (upper trace) and not active (lower trace) versus f at (3 = 2. 

4 Discussion 

The main outcome of this analysis is that attractors can co-exist with a stable 
background when neurons have generic threshold-linear gain functions, so long as 
the sparse coding limit is avoided. The parameter regime for this co-existence is 
much larger than for attractor networks that operate in the sparse coding limit 
[2 ,23]. While these results are encouraging, they do not definitively establishing 
that attractors can exist in realistic networks. Future work must include inhibitory 
neurons , incorporate a much larger exploration of parameter space to ensure that 
the results are robust , and ultimately involve simulations with spiking neurons. 
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