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Abstract

The adaptive TAP Gibbs free energy for a general densely connected
probabilistic model with quadratic interactions and arbritary single site
constraints is derived. We show how a specific sequential minimization
of the free energy leads to a generalization of Minka’s expectation propa-
gation. Lastly, we derive a sparse representation version of the sequential
algorithm. The usefulness of the approach is demonstrated on classifica-
tion and density estimation with Gaussian processes and on an indepen-
dent component analysis problem.

1 Introduction

There is an increasing interest in methods for approximate inference in probabilistic (graph-
ical) models. Such approximations may usually be grouped in three classes. In the first case
we approximate self-consistency relations for marginal probabilities by a set of nonlinear
equations. Mean field (MF) approximations and their advanced extensions belong to this
group. However, it is not clear in general, how to solve these equations efficiently. This
latter problem is of central concern to the second class, the Message passing algorithms,
like Bayesian online approaches (for references, see e.g. [1]) and belief propagation (BP)
which dynamically update approximations to conditional probabilities. Finally, approxima-
tions based on Free Energiesallow us to derive marginal moments by minimising entropic
loss measures. This method introduces new possibilities for algorithms and also gives ap-
proximations for the log-likelihood of observed data. The variational method is the most
prominent member of this group.

One can gain important insight into an approximation, when it can be derived by different
approaches. Recently, the fixed points of the BP algorithm were identified as the stable min-
ima of the Bethe Free Energy, an insight which led to improved approximation schemes [2].
While BP is good and efficient on sparse tree-like structures, one may look for an approxi-



mation that works well in the opposite limit of densely connected graphs where individual
dependencies are weak but their overall effect cannot be neglected. A interesting candi-
date is the adaptive TAP (ADATAP) approach introduced in [3] as a set of self-consistency
relations. Recently, a message passing algorithm of Minka (termed expectation propaga-
tion) [1] was found to solve the ADATAP equations efficiently for models with Gaussian
Process (GP) priors.

The goal of this paper is three-fold. We will add a further derivation of ADATAP using
an approximate free energy. A sequential algorithm for minimising the free energy gener-
alises Minka’s result. Finally, we discuss how a sparse representation of ADATAP can be
achieved for GP models, thereby extending previous sparse on-line approximations to the
batch case [4].

We will specialize to probabilistic models on undirected graphs with nodes i that are of the
type
S
P,(S) = % exp Zsijijsj 1)
1<j

The set of J;;’s encodes the dependencies between the random variables S =
(S1,...,Sn), whereas the factorising term p(S) = []; p;(S;) (called likelihood in the
following) usually encodes observed data at sites ¢ and also incorporates all local con-
straints of the S; (the range, discreteness, etc). Hence, depending on these constraints, .S;
maybe discrete or continuous. Eq. (1) is a sufficiently rich and interesting class of models
containing Boltzmann machines, models with Gaussian process priors [3], probabilistic in-
dependent component analysis [5] as well as Bayes belief networks and probabilistic neural
networks (when the space of variables is augmented by auxiliary integration variables).

2 ADATAP approach from Gibbs Free Energy

We use the minimization of an approximation to a Gibbs Free Energy G in order to re-
derive the ADATAP approximation.

The Gibbs Free Energy provides a method for computing marginal moments of P as well
as of —1n Z within the same approach. It is defined by a constrained relative entropy
minimization which is, for the present problem defined as

G,(m,M) = mqi)n {KL(Q,PP) | (S)g = m, (Sz)Q = M} —InZ, 2

where the brackets denote expectations with respect to the distribution @ and (S?)q is
shorthand for a vector with elements (S2)q. Finally, KL(Q, P,) = [ dS Q(S)In -28)

P,(S)"
Since at the total minimum of G (with respect to its arguments) the minimizer in (,,2) is
just @ = P,, we conclude that ming, v G(m,M) = —InZ and the desired marginal

moments of P are ((S), (S?)) = argmin,y, \y G(m).

We will search for an approximation to G, which is based on splitting G, = Gg + AG,,
where G° is the Gibbs free energy for a factorising model that is obtained from (1) by
setting all J;; = 0. Previous attempts [6, 7] were based on a truncation of the power series
expansion of AG, with respect to the J;; at second order. While this truncation leads to
the correct TAP equations for the large N limit of the so-called SK-model in statistical
physics, its general significance is unclear. In fact, it will not be exact for a simple model
with Gaussian likelihood. To make our approximation exact for such a case, we define
(generalizing an idea of [8]) for an arbitrary Gaussian likelihood p?, AGY(m,M) =
G ps (m, M) —GY, (m, M). The main reason for this definition is the fact that AG?¢ (m, M)
is independent of the actual Gaussian likelihood p{ chosen to compute G,! This result



depends crucially on the moment constraints in (2). Changes in a Gaussian likelihood
can always be absorbed within the Lagrange-multipliers for the constraints. We use this
universal form AG? to define the ADATAP approximation as G} 4” = G + AG?, which
by construction is exact for any Gaussian likelihood p. Introducing approprlate Lagrange
multipliers 4 and X, we get

AGI(m, M) = max {— In Z9(v,A) + mTv — %MT)\} - % Zln (M; —m?) (3)

Ay
with Zg(w, = fds exp [2 (1iSi = 2X:SD) + Yo, siJi,-sj]. Finally, setting
Z2(v2,N0) = [dSpi(S) exp[r{S — $A?5%], we have
1
— 0 T 0
GO_)I\%’a;(o{ ;an YA + mT40 — 2M)\}. 4

3 Sequential Algorithm

The expression of GTAP in terms of moments (m, M) and Lagrange parameters -+, A

and %, A\° suggests that we may find local minima of GTAP by |terat|vely alternating
between updates of moments and Lagrange multipliers. Of speual interest is the following
sequential algorithm, which is a generalization of Minka’s EP [1] for Gaussian process
classification to an arbritary model of the type eqg. (1).

We choose a site ¢ and define the updates by using the saddle points of G, with respect
to the moments and Lagrange multipliers in the following sequential order (where A is a
diagonal matrix with elements \;):

8%.,,\1.(},, =0 = m; = Z [(A — J)_l]ij i & M;— mf = [(Al— J)_l]ii
Omi ;G =0 = 'y? =y — Mm’m & Ni=-)\ - e

O 20G, =0 = =0, 0 In Z? & M;:= —26/\0 In Z?
Bmi,MiGp =0 = ’Y = —’yz % & A= —/\? Miim? .

The algorithm proceeds then by choosing a new site. The computation of (A — J)~! can
be performed efficiently using the Sherman-Woodbury formula because only one element
A; is changed in each update.

3.1 Cavity interpretation

At the fixed point, we may take P;(S) = "’(S) exp[?S — 219.52] as the ADATAP approx-

imation to the true marginal distribution of S [3]. The sequential approach may thus be
considered as a belief propagation algorithm for ADATAP.

Although P; is usually not Gaussian, we can also derive the moments m and M from the
Gaussian distribution corresponding to Z9. This auxiliary Gaussian model P?(S) has a
likelihood p? (S) o exp[—3X;S? + ;5] and provides us also with an additional approxi-
mation to the matrix of covariances via x = (A — J)~L. This is useful when the coupling
matrix J must be adapted to a set of observations by maximum likelihood Il. We will give
an example of this for independent component analysis below.

It is important to understand the role of 4° and A° within the “cavity” approach to the
TAP equations. Defining h; = 3=, J;;S;, it is easy to show that 7Y = (h;)\; and A} =
(h2)\i — (hz-)%i where the brackets denote an expectation with respect to the distribution of



all remaining variables P?(S\S;) o [[; ;; p3(S;) exp[D_j<12; Jk1SkSi] When node ¢ is
deleted from the graph. This statistics of a; corresponds to the empty “cavity” at site ¢. The
marginal distribution P;(S) as computed by ADATAP is equivalent to the approximation
that the cavity distribution is Gaussian.

4 Examples

4.1 Models with Gaussian Process Priors

For this class of models, we assume that the graph is embedded in R”, where the vector
S is the restriction of a Gaussian process (random field) ¢(x) with x € R?, to a set of
training inputs via S; = ¢(x;). P,(S) is the posterior distribution corresponding to a local
likelihood model, when we set J = —K~! and the matrix K is obtained from a positive
definite covariance kernel as K;; = Ko (x;,x;). The diagonal element (K —1);; is included
in the likelihood term.

Our ADATAP approximation can be extended from the finite set of inputs to the entire
space R by extending the auxiliary Gaussian distribution P¢ with its likelihoods p? (S)
to a Gaussian process with mean (¢(x)) and posterior covariance kernel K, (x,x’) which
approximates the posterior process. A calculation similar to [4] leads to the representation

@x) = > Ko(x,%;)7 )
J
K,(x,x') = Ko(x,x')+ZK0(x,xj)Xij0(xk,x') (6)
ok

Algorithms for the update of +’s and x’s will usually suffer from time consuming matrix
multiplications when N is large. This common problem for GP models can be overcome
by a sparsity approximation which extends previous on-line approaches [4] to the batch
ADATAP approach. The idea is to replace the current version P?¢ of the approximate Gaus-
sian with a further approximation P¢ for which both the the corresponding 4; as well as
X;r are nonzero only, when the nodes j and & belong to a smaller subset of nodes called
"basis vectors” (BV) of size n [4]. For fixed BV set, the parameters of ¢ are determined
by minimizing the relative entropy K L(P¢, P9). This yields 4 = 7y and A = wAxT
with the n x NN projection matrix = = Kg%,KJF. Here K is the kernel matrix between
BVs and and K the kernel matrix between BVs and all nodes. The new distribution P9
can be written in the form (1) with a likelihood that contains only BVs

P(87Y) = exp[3 o (r TSP )s = 5 3 A{(aTSPV)N 7)

Eq. (7) can be used to compute the sparse approximation within the sequential algorithm.
We will only give a brief discussion here. In order to recompute the appropriate "cavity”
parameters 9 and A? when a new node is chosen by the algorithm, one removes a ”pseudo-
variable” (wTSpy); from the likelihood and recomputes the statistics of the remaining
ones. When i is in the BV set, then simply (w7SBY); = SBV and the computation
reduces to the previous one. We will demonstrate the significance of this approach for two
examples.

4.2 Independent Component Analysis

We consider a measured signal X; which is assumed to be an instantaneous linear mixing
of sources S corrupted with additive white Gaussian noise I" that is,

X; = AS; + Ty, (8)



where A is a (time independent) mixing matrix and the noise vector is assumed to be
without temporal correlations having time independent covariance matrix 3. We thus have
the following likelihood for parameters and sources at time ¢

P(X,|A, 2, 8;) = (det 27X%) "2 ¢ 3(Xe-AS)TETI (X, -AS) )

and for all times P(X|A,X,S) = [[, P(X¢|A,X,S;). The aim of independent com-
ponent analysis is to recover the unknown quantities: the sources S, the mixing matrix
A and the noise covariance 3 from the observed data using the assumption of statistical
independence of the sources P(S;) = [], P(Si). Following [5], we estimate the mix-
ing matrix A and the noise covariance X, by an MLII procedure, i.e. by maximizing
the Likelihood P(X|A, X) = [dSP(X|A, X, S) P(S). The corresponding estimates are
Anieir = 3, X (S)7 (X, (S¢SE)) " and Sarn = 4 (X — AS)(X — AS)T). These
estimates require averages over the posterior of S which has again the structure of the model
eg. (1). They can be obtained efficiently using our sequential belief propagation algorithm
in an iterative EM fashion, where the E-step amounts to estimating (S;) and (S;S/) with
fixed A and X and the M-step consists of updating A and X.

5 Simulations

5.1 Classification with GPs

This problem has been studied before [9, 4] using a sequential, sparse algorithm, based
on a single sweep through the data only. Within the ADATAP approach we are able to
perform multiple sweeps in order to achieve a self-consistent solution. The outputs are bi-
nary y € {—1,1} and the likelihood is based on the probit model P(y|¢(z)) = Erf (u) =

\/#2—# ff dt exp [——] where u = y¢(z) /oo and o9 measures the noise level. The pre-

dictive distribution for a new test input z is Erf(y(¢(z))¢ /o) with 02 = 02 + K;(z, ),
which is easily rewritten in terms of the parameters «’s and x’s according to egs. (5).
We used the USPS dataset® of gray-scale handwritten digit images of size 16 x 16 with
7291 training patterns and 2007 test patterns. For the kernel we choose the RBF kernel
Ko(z,7') = ax exp(—||z — 2'||* / (mo%)) where m is the dimension of the inputs (256 in
this case), and ax and o are parameters. In the simulations we used 7000 random training
examples. We performed simulations for different sizes of the BV set and compared mul-
tiple iterations with a single sweep through the dataset. The results are displayed in Fig. 1.
The lines show the average results of 5 runs where the task was to classify the digits into
fours/non-fours. Our results show that, in contrast to the online learning, the fluctuations
caused by the order of presentation are diminished (marked with bars on the figure).

5.2 Density estimation with GPs

Bayesian non-parametric models for density estimation can be defined [10] by parametris-
ing densities p as p(z|¢) = W and using a Gaussian process prior over the space

of functions ¢. Observing N data points D = z1,...,2x, We can express the predictive
distribution (again, E denotes the expectation over the GP prior) as

N

p(z|D) = %E [ x|¢)Hp(:L‘1|¢):| ZN'/ dliN E |:¢2($)H¢2(];1) o~ 6% (@)de

x /0 darz v [ x)Hd) xz)]
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Figure 1: Results for classification for different BV sizes (x-axis) and multiple sweeps
through the data.

Figure 2: The GP estimation (continuous line) of a mixture of Gaussians (dotted line) using
10 BVs.

In the last expression, we have introduced an expectation over a new, effective Gaussian
obtained by multiplying the old prior and the term e—!J ¢°()dz and normalizing by Z;.
We assume that for sufficiently large IV the integral over [ can be performed by Laplace’s
method, leaving us with an approximate predictor of the form p(z|D) o< {(¢?(z));, Where
the brackets denote posterior expectation for a GP model with a kernel that is a solution to
the integral equation K;(z,y) = Ko(z,y) — I [ dz Ko(z,2)K(z,y). The likelihood of
the fields S; = ¢(z;) at the observation points is p; (S) = S2e—2 ¥ )5 For any fixed
1, we can apply the sparse ADATAP algorithm to this problem. After convergence of this
inner loop, a new value of I must be determined from (following a Laplace argument) % =
(¢?(x)); until global convergence is achieved. To give a simplified toy example, we choose
a kernel Ko(x,y) which reproduces itself after convolution. Hence, the [ dependence is
scaled out and we work with I = 1 and normalised at the end. We used a periodic kernel
for data in [0, 1] given by

Ko(z,y) = — cos(2mko(x — y)) + sin(2mko(z — y)) cot(n(z — y)) .

K has constant Fourier coefficients up to a cutoff frequency kq (ko = 6 in our simulations).

For the experiment we are using artificial data from a mixture of two Gaussians (dotted
line in Fig. 2). We apply the sparse algorithm with multiple sweeps through the data. The
sparsity also avoids the numerical problems caused by a possible close to singular Gram
matrix. For the experiments, the size of the BV set was not limited a priori, and a similar
criterion as in [4] was chosen in order to decide whether a data point should be included
in the BV set or not. As a result, for 500 training data, only 10 were retained in the BV set.
(continuous line in Fig. 2).



5.3 Independent Component Analysis

We have tested the sequential algorithm on an ICA problem for local feature extraction
in hand written digits, i.e. extracting the different stroke styles [5] . We assumed positive
components of A (enforced by Lagrange multipliers) and a positive prior

P(Sit) = ©(Sit) exp(—Sit) (10)

As in [5] we used 500 handwritten *3’s which are assumed to be generated by 25 hidden
images. We compared a traditional parallel update algorithm with the sequential belief
propagation algorithm. Both algorithms have computational complexity O(N?3). We find
that the sequential algorithm needs only on average 7 sweeps through the sites to reach the
desired accuracy whereas the parallel one fails to reach the desired accuracy in 100 sweeps
using a somewhat larger number of flops. The adaptive TAP method using the sequential
belief propagation approach is also not more computationally expensive than the linear
response method used in [5].

6 Conclusion and Outlook

An obvious future direction for the ADATAP approach is the investigation of other mini-
mization algorithms as an alternative to the EP approach outlined before. Also an extension
of the sparse approximation to other non-GP models will be interesting. A highly important
but difficult problem is the assessment of the accuracy of the approximation.
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