
Neural Implementation of Bayesian 
Inference in Population Codes 

Si Wu 
Computer Science Department 

Sheffield University, UK 

Shun-ichi Amari 
Lab. for Mathematic Neuroscience, 

RIKEN Brain Science Institute, JAPAN 

Abstract 

This study investigates a population decoding paradigm, in which 
the estimation of stimulus in the previous step is used as prior 
knowledge for consecutive decoding. We analyze the decoding accu­
racy of such a Bayesian decoder (Maximum a Posteriori Estimate), 
and show that it can be implemented by a biologically plausible 
recurrent network, where the prior knowledge of stimulus is con­
veyed by the change in recurrent interactions as a result of Hebbian 
learning. 

1 Introduction 

Information in the brain is not processed by a single neuron, but rather by a popu­
lation of them. Such a coding strategy is called population coding. It is conceivable 
that population coding has advantage of being robust to the fluctuation in a single 
neuron's activity. However, people argue that population coding may have other 
computationally desirable properties. One such property is to provide a framework 
for encoding complex objects by using basis functions [1]. This is inspired by the 
recent progresses in nonlinear function approximation, such as, sparse coding, over­
complete representation and kernel regression. These methods are efficient and show 
some interesting neuron-like behaviors [2,3]. It is reasonable to think that similar 
strategies are used in the brain under the support of population codes. However, 
to confirm this idea, a general suspicion has to be clarified: can the brain perform 
such complex statistic inference? An important work towards the answer of this 
question was done by Pouget and co-authors [4,5]. They show that Maximum Like­
lihood (ML) Inference, which is usually thought to be complex, can be implemented 
by a biologically plausible recurrent network using the idea of line attractor. 

ML is a special case of Bayesian inference when the stimulus is (or assumed to be) 
uniformly distributed. In case there is prior knowledge on the stimulus distribution, 
Maximum a Posteriori (MAP) Estimate has better performance. Zhang et al. has 
successfully applied MAP for reconstructing the rat position in a maze from the 
activity of hippocampal place cells [6]. In their method, the prior knowledge is 
the rat's position in the previous time step, which restricts the variability of rat's 
position in the current step under the continuity constraint. It turns out that MAP 
has a much better performance than other decoding methods, and overcomes the 
inefficiency of ML when information is not sufficient (when the rat stops running). 



This result implies that MAP may be used by the nervous system. So far, in the 
literature MAP has been mainly studied as a mathematic tool for reconstructing 
data, though its potential neural implementation was pointed out by [1 ,6]. 

In the present study, we will firmly show how to implement MAP in a biologic way. 
The same kind of recurrent network for achieving ML is used [4,5]. The decoding 
process consists of two steps. In the first step when there is no prior knowledge of 
the stimulus, the network implements ML. Its estimation is subsequently used to 
form the prior distribution of stimulus for consecutive decoding, which we assume 
is a Gaussian function with the mean value being the estimation. It turns out 
that this prior knowledge can be naturally conveyed by the change in the recurrent 
interactions according to the Hebbian learning rule. This is an interesting finding 
and suggests a new role of Hebbian learning. In the second step, with the changed 
interactions, the network implements MAP. The decoding accuracy of MAP and 
the optimal form of Gaussian prior are also analyzed in this paper. 

2 MAP in Population Codes 

Let us consider a standard population coding paradigm. There are N neurons 
coding for a stimulus x. The population activity is denoted by r = {rd. Here ri is 
the response of the ith neuron, which is given by 

(1) 

where fi(X) is the tuning function and fi is a random noise. 

The encoding process of a population code is specified by the conditional probability 
Q(rlx) (i.e., the noise model). The decoding is to infer the value of x from the 
observed r. 

We consider a general Bayesian inference in a population code, which estimates the 
stimulus by maximizing a log posterior distribution, In P(xlr) , i.e. , 

argmaxx In P(xlr) , 
argmaxx InP(rlx) + InP(x), (2) 

where P(rlx) is the likelihood function. It can be equal to or different from the real 
encoding model Q(rlx) , depending on the available information of the encoding 
process [7]. P(x) is the distribution of x, representing the prior knowledge. This 
method is also called Maximum a Posteriori (MAP). When the distribution of x is , 
or is assumed to be (when there is no prior knowledge) uniform, MAP is equivalent 
to ML. 

MAP could be used in the information processing of the brain in several occasions. 
Let us consider the following scenario: a stimulus is decoded in multiple steps. This 
happens when the same stimulus is presented through multiple steps, or during 
a single presentation, neural signals are sampled many times. In both cases, the 
brain successively gains a rough estimation of the stimulus in each step decoding, 
which can serve to be the prior knowledge when further decoding is concerned. It 
is therefore natural to use MAP in this situation. Experiencing slightly different 
stimuli in consecutive steps as studied in [6], or more generally, stimulus slowly 
changes with time (multiple-step diagram is a discreted approximation), is a similar 
scenario. For simplicity, we only consider that stimulus is unchanged in the present 
study. 



2.1 The Performance of MAP 

Let us analyze the performance of MAP. Some notations are introduced first. De­
note Xt a particular estimation of the stimulus in the tth step, and 0; the corre­
sponding variance. The prior distribution of x in the t + lth step is assumed to be 
a Gaussian with the mean value X"~ i.e., 

P(xIXt) = _1_ exp-CX-Xt)2 /2r;, 
.,J2irTt 

(3) 

where the parameter Tt reflects the estimator's confidence on xt, whose optimal 
value will be calculated later. 

The posterior distribution of x in the t + lth step is given by 

P( I ) = P(rlx)P(xlxt) 
xr P(r) , 

and the solution of MAP is obtained by solving 

\7 In P(Xt+1 Ir) \7lnP(rlxt+l) - (Xt+l-Xt)/T;, 
O. 

(4) 

(5) 

We calculate the decoding accuracies iteratively. In the first step decoding, since 
there is no prior knowledge on x, ML is used, whose decoding accuracy is known to 
be [7] 

02- «\7lnP(rlx))2> 
1 - < -\7\7lnP(rlx) >2' 

(6) 

where the bracket < . > denotes averaging over Q(rlx). 

Note that, to get the above result, we have considered that ML is asymptotically or 
quasi-asymptotically (when an unfaithful model is used) efficient [7]. This includes 
the cases when neural responses are independent, weakly correlated, uniformly cor­
related, correlated with strength proportional to firing rate (multiplicative correla­
tion), or the fluctuation in neural responses are sufficiently small. In other strong 
correlation cases, ML is proved to be non-Fisherian, i.e, its decoding error satisfies 
a Cauchy type of distribution with variance diverging. Decoding accuracy can no 
longer be quantified by variance in such situations (for details, please refer to [8]) . 

Now come to calculate the decoding error in the second step. Suppose X2 is close 
enough to x. By expanding \7lnP(rlx2) at x in eq.(5), we obtain 

\7lnP(rlx) + \7\7lnP(rlx)(x2 - x) - (X2 - X1)/T; = O. (7) 

The random variable Xl can be decomposed as Xl = x + f1, where f1 is a random 
number satisfying Gaussian distribution of zero mean and variance Oi. 
By using the notation of f1, we have 

A \7lnP(rlx)+fdTf 
X2 -x = l/T; - \7\7lnP(rlx)' 

(8) 

For the correlation cases considered in the present study (i.e, those ensure ML 
asymptotically or quasi-asymptotically efficient), - \7\7 In P(rlx) can be approxi­
mated as a (positive) constant according to the law of large numbers [7,8]. There­
fore, we can define a constant variable 

a = T;(-\7\7lnP(rlx)), (9) 



and a random variable 
R = \71nP(rlx) 

- \7\71n P(rlx) . 

Obviously R satisfies the Gaussian distribution of zero mean and variance 0I. 
By using the notations 0: and R, we get 

o:R+fl 
X2- X = ---

1+0: 
whose variance is calculated to be 

(10) 

(11) 

(12) 

Since (1 + 0:2)/(1 + 0:)2 ::::: 1 holds for any positive 0:, the decoding accuracy in the 
second step is always improved. It is not difficult to check that its minimum value 
is 

0 2 - !02 
2 - 2 1> 

when 0: = 1, or, the optimal value of Tl is 

1 Tl=----,.......,.....,.. 
- \7\71n P(rlx) 

(13) 

(14) 

When a faithful model is used, -\7\71nQ(rlx) is the Fisher information. Tl hence 
equals to the variance of decoding error. This is understandable. 

Following the same procedure, it can be proved that the optimal decoding accuracy 
in the tth step is 0; = tOI when the width of Gaussian prior being Tl = tTl. 
It is interesting to see that the above multiple decoding procedure, when the optimal 
values of Tt are used, achieves the same decoding accuracy as a one-step ML by 
using all N x t signals. This is the best for any estimator to achieve. However, 
the multiple decoding is not a trivial replacement of one-step ML, and has many 
advantages. One of them is to save memory, considering that only N signals and 
the value of previous estimation are stored in each step. Moreover, if a slowly 
changing stimulus is concerned, the multiple decoding outperforms one-step ML for 
the balance between adaptation and memory. These properties are valuable when 
information is processed in the brain. 

3 Network Implementation of MAP 

In this section, we investigate how to implement MAP by a recurrent network. A 
two-step decoding is studied. Without loss of generality, we consider N ---+ 00 and 
do calculation in the continuous limit. 

The network we consider is a fully connected one-dimensional homogeneous neural 
field, in which c denotes the position coordinate, i.e., the neurons' preferred stimuli. 
The tuning function of the neuron with preferred stimulus c is 

f c(x) = _1_ exp-( c- x)2/2a2 . (15) 
"fiifa 

For simplicity, we consider an encoding process in which the fluctuations in neurons' 
responses are independent Gaussian noises (more general correlated cases can be 
handled similarly), that is, 

Q(rlx) = ~ exp-~ j(Tc - f c (x))2 dC, (16) 



where p is the neuron density and Z is the normalization factor. A faithful model 
is used in both steps decoding, i.e., P(rlx) = Q(rlx) (again, generalization to more 
general cases of P(rlx) -::/:- Q(rlx) is straightforward.). 

For the above model setting, the solution of ML in the first step is calculated to be 

Xl = argmaxx J rc!e(x)de, 

where the condition J J;(x)de = const has been used. 

The solution of MAP in the second step is 

X2 = argmaxx J rc!e(x)de - (x - xd2/ 2Tf. 

(17) 

(18) 

Compared with eq.(17), eq.(18) has one more term corresponding to the contribu­
tion of prior distribution. 

Now come to the study of using a recurrent network to realize eqs.(17) and (18). 
Following the idea of Pouget et al. [4,5], the following network dynamics is con­
structed. Let Ue denote the (average) internal state of neuron at e, and We,e' the 
recurrent connection weights from neurons at e to those at e'. The dynamics of 
neural excitation is governed by 

dUe J 0 ' dt = -Ue + We ,e' e, de + Ie, (19) 

where U; o e = ----;;-=--=-
1 + f..LJU;de 

(20) 

is the activity of neurons at e and Ie is the external input arriving at e. 

The recurrent interactions are chosen to be 

W - exp-(e-e')2/2a2 
c,c' - , (21) 

which ensures that when there is no external input (Ie = 0), the network is neutrally 
stable on line attractor, 

'r:/z, (22) 

where the parameter D is constant and can be determined easily. Note that the 
line attractor has the same shape as the tuning function. This is crucial, which 
allows the network perform template-matching by using the tuning function , being 
as same as ML and MAP. 

When a sufficiently small input Ie is added, the network is no longer neutrally 
stable on the line attractor. It can be proved that the steady state of the network 
has approximately the same shape as eq.(22) (the deviation is of the 2nd order of 
the magnitude of Ie.), whereas, its steady position on the line attractor (i.e., the 
network estimation) is determined by maximizing the overlap between Ie and Oe(Z) 
[4,9]. 

Thus, if Ie = ere in the first step1, where e is a sufficiently small number, the 
network estimation is given by 

21 = argmaxz J reOe(z)de, (23) 
-------------

lConsider an instant input, triggering the network to be initially at Oe(t = 0) = r e, as 
used in [5] , has the same result . 



which has the same value as the solution of ML (see eq.(I7)). We say that the 
network implements ML. 

To implement MAP in the second step, it is critical to identify a neural mechanism 
which can 'transmit' the prior knowledge obtained in the first step to the second 
one. We find that this is naturally done by Hebbian learning. 

After the first step decoding, the recurrent interaction changes a small amount 
according to the Hebbian rule, whose new value is 

(24) 

where TJ is a small positive number representing the Hebbian learning rate, and 
Oe(,2d is the neuron activity in the first step. 

With the new recurrent interactions, the net input from other neurons to the one 
at c is calculated to be 

J We,e l Oel dc' J We,e l Oel dc' +TJOe(,2d J Oe/(zdOe,dc' , 

(25) 

where 1/ is a small constant. To get the last approximation, the following facts have 
been used: 1) The initial state of neuron in the second step is at Oe(Z1 ), 2) The 
neuron activity Oe during the second step is between Oe(zd and Oe(Z2 ), where Z2 
is the position of the steady state; 3) (Z1 - z2 )2/2a2 « 1, considering that neurons 
are widely tuned as seen in data (a is large) and consecutive estimations are close 
enough. These factors ensures the approximation, J Oe/ (zdOe,dc' :=;:j const to be 
good enough. 

Substituting eq.(25) in (19), we see that the network dynamics in the second step, 
when compared with the first one, is in effect to modify the input Ie to be I~ = 

€(re + AOc(zd), where A is a constant and can be determined easily. 

Thus, the network estimation in the second step is determined by maximizing the 
overlap between I~ and Oc(z), which gives 

Z2 = argmaxz J rcOc(z)dc + A J Oe(zdOe(z )dc. (26) 

The first term in the right handside is known to achieve ML. Let us see the contri­
bution of the second one, which can be transformed to 

J Oe(zdOc(z)dc = Bexp-CZI-Z)2/4a2, 

:=;:j -B(z - zd 2 /4a2 + terms not on z, (27) 

where B is a constant. Again, in the above calculation, (Z1 - z)2/4a2 « 1 is used 
for the same argument discussed above. 

Compare eqs.(I8) and (27), we see that the second term plays the same role as the 
prior knowledge in MAP. Thus, the network indeed implements MAP. The value of 
A (or the Hebbian learning rate) can be adjusted accordingly to match the optimal 
choice of Tf . 
The above result is confirmed by the simulation experiment (Table.I) , which was 
done with 101 neurons uniformly distributed in the region [-3,3] and the true 
stimulus being at O. It shows that the estimation of the network agrees well with 
MAP. 



Table 1: Comparing the decoding accuracies of the network and MAP with different 
values of a (the corresponding values of T[ and A are adjusted.). The parameters 
are a = 1, f-t = 0.5 and (J2 = 0.01. The data is obtained after 100 trials. 

4 Conclusion and Discussion 

In summary we have investigated how to implement MAP by using a biologically 
plausible recurrent network. A two-step decoding paradigm is studied. In the first 
step when there is no prior knowledge, the network implements ML, whose estima­
tion is subsequently used to form the prior distribution of stimulus for consecutive 
decoding. In the second step, the network implements MAP. 

Line attractor and Hebbian learning are two critical elements to implement MAP. 
The former enables the network to do template-matching by using the tuning func­
tion, being as same as ML and MAP. The latter provides a mechanism that conveys 
the prior knowledge obtained from the first step to the second one. Though the re­
sults in this paper may quantitatively depend on the formulation of the models , it is 
reasonable to believe that they are qualitatively true, as both Hebbian learning and 
line attractor are biologically plausible. Line attractor comes from the translation 
invariance of network interactions, and has been shown to be involved in several 
neural computations [10-12]. We expect that the essential idea of Bayesian inference 
of utilizing previous knowledge for successive decoding is used in the information 
processing of the brain. 

We also analyzed the decoding accuracy of MAP in a population code and the 
optimal form of Gaussian prior. In the present study, stimulus is kept to be fixed 
during consecutive decodings. A generalization to the case when stimulus slowly 
changes over time is straightforward. 
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