
Relative Density Nets: A New Way to
Combine Backpropagation with HMM's

Andrew D. Brown
Department of Computer Science

University of Toronto
Toronto, Canada M5S 3G4

andy@cs.utoronto.ca

Abstract

Geoffrey E. Hinton
Gatsby Unit, UCL

London, UK WCIN 3AR
hinton@gatsby.ucl.ac.uk

Logistic units in the first hidden layer of a feedforward neural net­
work compute the relative probability of a data point under two
Gaussians. This leads us to consider substituting other density
models. We present an architecture for performing discriminative
learning of Hidden Markov Models using a network of many small
HMM's. Experiments on speech data show it to be superior to the
standard method of discriminatively training HMM's.

1 Introduction

A standard way of performing classification using a generative model is to divide the
training cases into their respective classes and then train a set of class conditional
models. This unsupervised approach to classification is appealing for two reasons. It
is possible to reduce overfitting, because the model learns the class-conditional input
densities P(xlc) rather than the input-conditional class probabilities P(clx). Also,
provided that the model density is a good match to the underlying data density
then the decision provided by a probabilistic model is Bayes optimal. The problem
with this unsupervised approach to using probabilistic models for classification is
that, for reasons of computational efficiency and analytical convenience, very simple
generative models are typically used and the optimality of the procedure no longer
holds. For this reason it is usually advantageous to train a classifier discriminatively.

In this paper we will look specifically at the problem of learning HMM's for classify­
ing speech sequences. It is an application area where the assumption that the HMM
is the correct generative model for the data is inaccurate and discriminative methods
of training have been successful. The first section will give an overview of current
methods of discriminatively training HMM classifiers. We will then introduce a new
type of multi-layer backpropagation network which takes better advantage of the
HMM's for discrimination. Finally, we present some simulations comparing the two
methods.

19 ' S1c1=" 1 1 1

[tn] [tn] [tn] HMM's

\V
Sequence

Figure 1: An Alphanet with one HMM per class. Each computes a score for the
sequence and this feeds into a softmax output layer.

2 Alphanets and Discriminative Learning

The unsupervised way of using an HMM for classifying a collection of sequences is to
use the Baum-Welch algorithm [1] to fit one HMM per class. Then new sequences
are classified by computing the probability of a sequence under each model and
assigning it to the one with the highest probability. Speech recognition is one of the
commonest applications of HMM's, but unfortunately an HMM is a poor model of
the speech production process. For this reason speech researchers have looked at the
possibility of improving the performance of an HMM classifier by using information
from negative examples - examples drawn from classes other than the one which
the HMM was meant to model. One way of doing this is to compute the mutual
information between the class label and the data under the HMM density, and
maximize that objective function [2].

It was later shown that this procedure could be viewed as a type of neural network
(see Figure 1) in which the inputs to the network are the log-probability scores
C(Xl:TIH) of the sequence under hidden Markov model H [3]. In such a model
there is one HMM per class, and the output is a softmax non-linearity:

(1)

Training this model by maximizing the log probability of correct classification leads
to a classifier which will perform better than an equivalent HMM model trained
solely in a unsupervised manner. Such an architecture has been termed an "AI­
phanet" because it may be implemented as a recurrent neural network which mimics
the forward pass of the forward-backward algorithm.l

3 Backpropagation Networks as Density Comparators

A multi-layer feedforward network is usually thought of as a flexible non-linear
regression model, but if it uses the logistic function non-linearity in the hidden
layer, there is an interesting interpretation of the operation performed by each
hidden unit. Given a mixture of two Gaussians where we know the component
priors P(9) and the component densities P(xl9) then the posterior probability that
Gaussian, 90 , generated an observation x , is a logistic function whose argument is
the negative log-odds of the two classes [4] . This can clearly be seen by rearranging

lThe results of the forward pass are the probabilities of the hidden states conditioned
on the past observations, or "alphas" in standard HMM terminology.

the expression for the posterior:

P(Qolx)
P(xI9o)P(Qo)

P(xI9o)P(Qo) + P(xI9dP (Qd
1

1 + exp {-log P(x IQo) - log P(Qo) }
P(x lQd P(Ql)

If the class conditional densities in question are multivariate Gaussians

P(xI9k) = 121f~1-~ exp {-~(x - Pk)T ~-l(X - Pk)}

(2)

(3)

with equal covariance matrices, ~ , then the posterior class probability may be
written in this familiar form:

where,

w

b

1
P(Qo Ix) = -l-+-e-xp-{-=---(:-x=Tw-+-b---:-) (4)

(5)

(6)

Thus, the multi-layer perceptron can be viewed as computing pairwise posteriors
between Gaussians in the input space, and then combining these in the output layer
to compute a decision.

4 A New Kind of Discriminative Net

This view of a feedforward network suggests variations in which other kinds of
density models are used in place of Gaussians in the input space. In particular,
instead of performing pairwise comparisons between Gaussians, the units in the
first hidden layer can perform pairwise comparisons between the densities of an
input sequence under M different HMM's. For a given sequence the log-probability
of a sequence under each HMM is computed and the difference in log-probability
is used as input to the logistic hidden unit.2 This is equivalent to computing the
posterior responsibilities of a mixture of two HMM's with equal prior probabilities.
In order to maximally leverage the information captured by the HMM's we use (~)
hidden units so that all possible pairs are included. The output of a hidden unit h
is given by

(7)

where we have used (mn) as an index over the set , (~) , of all unordered pairs of
the HMM's. The results of this hidden layer computation are then combined using
a fully connected layer of free weights, W, and finally passed through a soft max
function to make the final decision.

ak = L W(m ,n)kh(mn)

(mn) E (~)

(8)

(9)

2We take the time averaged log-probability so that the scale of the inputs is independent
of the length of the sequence.

Density
Comparator
Units

Figure 2: A multi-layer density net with HMM's in the input layer. The hidden
layer units perform all pairwise comparisons between the HMM's.

where we have used u(·) as shorthand for the logistic function, and Pk is the value
of the kth output unit. The resulting architecture is shown in figure 2. Because
each unit in the hidden layer takes as input the difference in log-probability of two
HMM's, this can be thought of as a fixed layer of weights connecting each hidden
unit to a pair of HMM's with weights of ±l.

In contrast to the Alphanet , which allocates one HMM to model each class, this net­
work does not require a one-to-one alignment between models and classes and it gets
maximum discriminative benefit from the HMM's by comparing all pairs. Another
benefit of this architecture is that it allows us to use more HMM's than there are
classes. The unsupervised approach to training HMM classifiers is problematic be­
cause it depends on the assumption that a single HMM is a good model of the data
and, in the case of speech, this is a poor assumption. Training the classifier discrim­
inatively alleviated this drawback and the multi-layer classifier goes even further in
this direction by allowing many HMM's to be used to learn the decision boundaries
between the classes. The intuition here is that many small HMM's can be a far
more efficient way to characterize sequences than one big HMM. When many small
HMM's cooperate to generate sequences, the mutual information between different
parts of generated sequences scales linearly with the number of HMM's and only
logarithmically with the number of hidden nodes in each HMM [5].

5 Derivative Updates for a Relative Density Network

The learning algorithm for an RDN is just the backpropagation algorithm applied
to the network architecture as defined in equations 7,8 and 9. The output layer is
a distribution over class memberships of data point Xl:T, and this is parameterized
as a softmax function. We minimize the cross-entropy loss function:

K

f = 2: tk logpk (10)
k = l

where Pk is the value of the kth output unit and tk is an indicator variable which is
equal to 1 if k is the true class. Taking derivatives of this expression with respect
to the inputs of the output units yields

of
-=tk-Pk (11)
oak

o£ Oak
-,---- = (tk - Pk)h(mn)

OW(mn) ,k oak OW(mn) ,k

O£
(12)

The derivative of the output of the (mn)th hidden unit with respect to the output
of ith HMM, £i, is

oh(mn)
~ = U(£m - £n)(l - U(£m - £n))(bim - bin) (13)

where (bim - bin) is an indicator which equals +1 if i = m, -1 if i = n and zero
otherwise. This derivative can be chained with the the derivatives backpropagated
from the output to the hidden layer.

For the final step of the backpropagation procedure we need the derivative of the
log-likelihood of each HMM with respect to its parameters. In the experiments we
use HMM's with a single, axis-aligned, Gaussian output density per state. We use
the following notation for the parameters:

• A: aij is the transition probability from state i to state j

• II: 7ri is the initial state prior

• f./, i : mean vector for state i

• Vi: vector of variances for state i

• 1-l: set of HMM parameters {A, II, f./" v}

We also use the variable St to represent the state of the HMM at time t. We make
use of the property of all latent variable density models that the derivative of the
log-likelihood is equal to the expected derivative of the joint log-likelihood under
the posterior distribution. For an HMM this means that:

O£(Xl:TI1-l) '" 0
o1-li = ~ P(Sl:Tlxl:T' 1-l) o1-l i log P(Xl:T' Sl:TI1-l)

Sl:T

The joint likelihood of an HMM is:

(logP(Xl:T ' Sl:TI1-l)) =
T

L(b81 ,i)log 7ri + LL(b8"jb8 ,_1 ,i)log aij +
t=2 i,j

(14)

~ ~(b8" i) [-~ ~IOgVi'd - ~ ~(Xt'd - f./,i,d) 2 /Vi,d] + canst (15)

where (-) denotes expectations under the posterior distribution and (b8 , ,i) and
(b8 , ,jb8 '_1 ,i) are the expected state occupancies and transitions under this dis­
tribution. All the necessary expectations are computed by the forward back­
ward algorithm. We could take derivatives with respect to this functional di­
rectly, but that would require doing constrained gradient descent on the prob­
abilities and the variances. Instead, we reparameterize the model using a
softmax basis for probability vectors and an exponential basis for the vari­
ance parameters. This choice of basis allows us to do unconstrained op-
timization in the new basis. The new parameters are defined as follows:

. _ exp(e;; ») . _ exp(e; ~») . _ (v)
a'J - 2: (e (a») , 7r, - 2: (e (~»)' V"d - exp(Oi,d)

JI exp 1JI if exp i

This results in the following derivatives:

O£(Xl :T 11-l)
oO(a)

'J

T

L [(b8 , ,jb8 '_1 ,i) - (b8 '_1 ,i)aij]
t = 2

(16)

8£(Xl:T 11£) (8S1 ,i) - 1fi (17)
80(7r)

•
8£(Xl:T 11£)

T

l)8st ,i)(Xt,d - f..li ,d)/Vi ,d (18)
8f..li,d t= l

8£(Xl:T 11£) 1 T

80(v)
2"l)8st ,i) [(Xt ,d - f..li ,d)2/Vi ,d - IJ (19)

.,d t= l

When chained with the error signal backpropagated from the output, these deriva­
tives give us the direction in which to move the parameters of each HMM in order
to increase the log probability of the correct classification of the sequence.

6 Experiments

To evaluate the relative merits of the RDN, we compared it against an Alphanet
on a speaker identification task. The data was taken from the CSLU 'Speaker
Recognition' corpus. It consisted of 12 speakers uttering phrases consisting of 6
different sequences of connected digits recorded multiple times (48) over the course
of 12 recording sessions. The data was pre-emphasized and Fourier transformed
in 32ms frames at a frame rate of lOms. It was then filtered using 24 bandpass,
mel-frequency scaled filters. The log magnitude filter response was then used as the
feature vector for the HMM's. This pre-processing reduced the data dimensionality
while retaining its spectral structure.

While mel-cepstral coefficients are typically recommended for use with axis-aligned
Gaussians, they destroy the spectral structure of the data, and we would like to
allow for the possibility that of the many HMM's some of them will specialize on
particular sub-bands of the frequency domain. They can do this by treating the
variance as a measure of the importance of a particular frequency band - using
large variances for unimportant bands, and small ones for bands to which they pay
particular attention.

We compared the RDN with an Alphanet and three other models which were im­
plemented as controls. The first of these was a network with a similar architecture
to the RDN (as shown in figure 2), except that instead of fixed connections of ±1,
the hidden units have a set of adaptable weights to all M of the HMM's. We refer
to this network as a comparative density net (CDN). A second control experiment
used an architecture similar to a CDN without the hidden layer, i.e. there is a single
layer of adaptable weights directly connecting the HMM's with the softmax output
units. We label this architecture a CDN-l. The CDN-l differs from the Alphanet
in that each softmax output unit has adaptable connections to the HMM's and we
can vary the number of HMM's, whereas the Alphanet has just one HMM per class
directly connected to each softmax output unit. Finally, we implemented a version
of a network similar to an Alphanet, but using a mixture of Gaussians as the in­
put density model. The point of this comparison was to see if the HMM actually
achieves a benefit from modelling the temporal aspects of the speaker recognition
task.

In each experiment an RDN constructed out of a set of, M, 4-state HMM's was
compared to the four other networks all matched to have the same number of free
parameters, except for the MoGnet. In the case of the MoGnet, we used the same
number of Gaussian mixture models as HMM's in the Alphanet, each with the
same number of hidden states. Thus, it has fewer parameters, because it is lacking
the transition probabilities of the HMM. We ran the experiment four times with

a) ~ b) ~

0.95 ~ e 0.95 e = E=:l
0.9

~ 0.9

0.85 0.85

0.8 0.8 B
0.75 8 0

0.75

0.7 0.7

EJ 0.65 0.65

0.6 0.6

0.55 0.55

RDN Alphanet MaGnet CDN CDN-1 RDN Alphanet MaGnet CDN CDN-1
Architecture Architecture

C) $ d) ~

~ ~ D e 0.9
~

~

* 8 *0.8
a: a:
c gO.7 U 0 ~ ~O.8 ~

~0.6
·in ·in
gj

B
gj

Ci CiO.5

8 0.4

0.3
0.6

RDN Alphanet MeG net CDN CDN-1 RDN Alphanet MeGnet CDN CDN-1
Architecture Architecture

Figure 3: Results of the experiments for an RDN with (a) 12, (b) 16, (c) 20 and
(d) 24 HMM's.

values of M of 12, 16, 20 and 24. For the Alphanet and MoGnet we varied the
number of states in the HMM's and the Gaussian mixtures, respectively. For the
CDN model we used the same number of 4-state HMM's as the RDN and varied
the number of units in the hidden layer of the network. Since the CDN-1 network
has no hidden units, we used the same number of HMM's as the RDN and varied
the number of states in the HMM. The experiments were repeated 10 times with
different training-test set splits. All the models were trained using 90 iterations of
a conjugate gradient optimization procedure [6] .

7 Results

The boxplot in figure 3 shows the results of the classification performance on the
10 runs in each of the 4 experiments. Comparing the Alphanet and the RDN we
see that the RDN consistently outperforms the Alphanet. In all four experiments
the difference in their performance under a paired t-test was significant at the level
p < 0.01. This indicates that given a classification network with a fixed number of
parameters, there is an advantage to using many small HMM's and using all the
pairwise information about an observed sequence, as opposed to using a network
with a single large HMM per class.

In the third experiment involving the MoGnet we see that its performance is com­
parable to that of the Alphanet. This suggests that the HMM's ability to model the
temporal structure of the data is not really necessary for the speaker classification
task as we have set it Up.3 Nevertheless, the performance of both the Alphanet and

3If we had done text-dependent speaker identification, instead of multiple digit phrases

the MoGnet is less than the RDN.

Unfortunately the CDN and CDN-l networks perform much worse than we ex­
pected. While we expected these models to perform similarly to the RDN, it seems
that the optimization procedure takes much longer with these models. This is prob­
ably because the small initial weights from the HMM's to the next layer severely
attenuate the backpropagated error derivatives that are used to train the HMM's.
As a result the CDN networks do not converge properly in the time allowed.

8 Conclusions

We have introduced relative density networks, and shown that this method of dis­
criminatively learning many small density models in place of a single density model
per class has benefits in classification performance. In addition, there may be a
small speed benefit to using many smaller HMM's compared to a few big ones.
Computing the probability of a sequence under an HMM is order O(TK2), where T
is the length of the sequence and K is the number of hidden states in the network.
Thus, smaller HMM's can be evaluated faster. However, this is somewhat counter­
balanced by the quadratic growth in the size of the hidden layer as M increases.

Acknowledgments

We would like to thank John Bridle, Chris Williams, Radford Neal, Sam Roweis ,
Zoubin Ghahramani, and the anonymous reviewers for helpful comments.

References

[1] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, "A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains,"
The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164-171, 1970.

[2] 1. R. Bahl, P. F. Brown, P. V. de Souza, and R. 1. Mercer, "Maximum mu­
tual information of hidden Markov model parameters for speech recognition,"
in Proceeding of the IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 49- 53, 1986.

[3] J. Bridle, "Training stochastic model recognition algorithms as networks can
lead to maximum mutual information estimation of parameters," in Advances in
Neural Information Processing Systems (D. Touretzky, ed.), vol. 2, (San Mateo,
CA), pp. 211- 217, Morgan Kaufmann, 1990.

[4] M. I. Jordan, "Why the logistic function? A tutorial discussion on probabilities
and neural networks," Tech. Rep. Computational Cognitive Science, Technical
Report 9503, Massachusetts Institute of Technology, August 1995.

[5] A. D. Brown and G. E. Hinton, "Products of hidden Markov models," in Proceed­
ings of Artificial Intelligence and Statistics 2001 (T. Jaakkola and T. Richard­
son, eds.), pp. 3- 11, Morgan Kaufmann, 2001.

[6] C. E. Rasmussen, Evaluation of Gaussian Processes and other Methods for Non­
Linear Regression. PhD thesis, University of Toronto, 1996. Matlab conjugate
gradient code available from http://www.gatsby.ucl.ac.uk/~edward/code/.

then this might have made a difference.

