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Logistic units in the first hidden layer of a feedforward neural net­
work compute the relative probability of a data point under two 
Gaussians. This leads us to consider substituting other density 
models. We present an architecture for performing discriminative 
learning of Hidden Markov Models using a network of many small 
HMM's. Experiments on speech data show it to be superior to the 
standard method of discriminatively training HMM's. 

1 Introduction 

A standard way of performing classification using a generative model is to divide the 
training cases into their respective classes and then train a set of class conditional 
models. This unsupervised approach to classification is appealing for two reasons. It 
is possible to reduce overfitting, because the model learns the class-conditional input 
densities P(xlc) rather than the input-conditional class probabilities P(clx). Also, 
provided that the model density is a good match to the underlying data density 
then the decision provided by a probabilistic model is Bayes optimal. The problem 
with this unsupervised approach to using probabilistic models for classification is 
that, for reasons of computational efficiency and analytical convenience, very simple 
generative models are typically used and the optimality of the procedure no longer 
holds. For this reason it is usually advantageous to train a classifier discriminatively. 

In this paper we will look specifically at the problem of learning HMM's for classify­
ing speech sequences. It is an application area where the assumption that the HMM 
is the correct generative model for the data is inaccurate and discriminative methods 
of training have been successful. The first section will give an overview of current 
methods of discriminatively training HMM classifiers. We will then introduce a new 
type of multi-layer backpropagation network which takes better advantage of the 
HMM's for discrimination. Finally, we present some simulations comparing the two 
methods. 
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Figure 1: An Alphanet with one HMM per class. Each computes a score for the 
sequence and this feeds into a softmax output layer. 

2 Alphanets and Discriminative Learning 

The unsupervised way of using an HMM for classifying a collection of sequences is to 
use the Baum-Welch algorithm [1] to fit one HMM per class. Then new sequences 
are classified by computing the probability of a sequence under each model and 
assigning it to the one with the highest probability. Speech recognition is one of the 
commonest applications of HMM's, but unfortunately an HMM is a poor model of 
the speech production process. For this reason speech researchers have looked at the 
possibility of improving the performance of an HMM classifier by using information 
from negative examples - examples drawn from classes other than the one which 
the HMM was meant to model. One way of doing this is to compute the mutual 
information between the class label and the data under the HMM density, and 
maximize that objective function [2]. 

It was later shown that this procedure could be viewed as a type of neural network 
(see Figure 1) in which the inputs to the network are the log-probability scores 
C(Xl:TIH) of the sequence under hidden Markov model H [3]. In such a model 
there is one HMM per class, and the output is a softmax non-linearity: 

(1) 

Training this model by maximizing the log probability of correct classification leads 
to a classifier which will perform better than an equivalent HMM model trained 
solely in a unsupervised manner. Such an architecture has been termed an "AI­
phanet" because it may be implemented as a recurrent neural network which mimics 
the forward pass of the forward-backward algorithm.l 

3 Backpropagation Networks as Density Comparators 

A multi-layer feedforward network is usually thought of as a flexible non-linear 
regression model, but if it uses the logistic function non-linearity in the hidden 
layer, there is an interesting interpretation of the operation performed by each 
hidden unit. Given a mixture of two Gaussians where we know the component 
priors P(9) and the component densities P(xl9) then the posterior probability that 
Gaussian, 90 , generated an observation x , is a logistic function whose argument is 
the negative log-odds of the two classes [4] . This can clearly be seen by rearranging 

lThe results of the forward pass are the probabilities of the hidden states conditioned 
on the past observations, or "alphas" in standard HMM terminology. 



the expression for the posterior: 

P(Qolx) 
P(xI9o)P(Qo) 

P(xI9o)P(Qo) + P(xI9dP (Qd 
1 

1 + exp {-log P(x IQo) - log P(Qo) } 
P(x lQd P(Ql) 

If the class conditional densities in question are multivariate Gaussians 

P(xI9k) = 121f~1-~ exp {-~(x - Pk)T ~-l(X - Pk)} 

(2) 

(3) 

with equal covariance matrices, ~ , then the posterior class probability may be 
written in this familiar form: 

where, 

w 

b 

1 
P(Qo Ix) = -l-+-e-xp-{-=---(:-x=Tw-+-b---:-) (4) 

(5) 

(6) 

Thus, the multi-layer perceptron can be viewed as computing pairwise posteriors 
between Gaussians in the input space, and then combining these in the output layer 
to compute a decision. 

4 A New Kind of Discriminative Net 

This view of a feedforward network suggests variations in which other kinds of 
density models are used in place of Gaussians in the input space. In particular, 
instead of performing pairwise comparisons between Gaussians, the units in the 
first hidden layer can perform pairwise comparisons between the densities of an 
input sequence under M different HMM's. For a given sequence the log-probability 
of a sequence under each HMM is computed and the difference in log-probability 
is used as input to the logistic hidden unit.2 This is equivalent to computing the 
posterior responsibilities of a mixture of two HMM's with equal prior probabilities. 
In order to maximally leverage the information captured by the HMM's we use (~) 
hidden units so that all possible pairs are included. The output of a hidden unit h 
is given by 

(7) 

where we have used (mn) as an index over the set , (~) , of all unordered pairs of 
the HMM's. The results of this hidden layer computation are then combined using 
a fully connected layer of free weights, W, and finally passed through a soft max 
function to make the final decision. 

ak = L W(m ,n)kh(mn) 

(mn) E (~) 

(8) 

(9) 

2We take the time averaged log-probability so that the scale of the inputs is independent 
of the length of the sequence. 
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Figure 2: A multi-layer density net with HMM's in the input layer. The hidden 
layer units perform all pairwise comparisons between the HMM's. 

where we have used u(·) as shorthand for the logistic function, and Pk is the value 
of the kth output unit. The resulting architecture is shown in figure 2. Because 
each unit in the hidden layer takes as input the difference in log-probability of two 
HMM's, this can be thought of as a fixed layer of weights connecting each hidden 
unit to a pair of HMM's with weights of ±l. 

In contrast to the Alphanet , which allocates one HMM to model each class, this net­
work does not require a one-to-one alignment between models and classes and it gets 
maximum discriminative benefit from the HMM's by comparing all pairs. Another 
benefit of this architecture is that it allows us to use more HMM's than there are 
classes. The unsupervised approach to training HMM classifiers is problematic be­
cause it depends on the assumption that a single HMM is a good model of the data 
and, in the case of speech, this is a poor assumption. Training the classifier discrim­
inatively alleviated this drawback and the multi-layer classifier goes even further in 
this direction by allowing many HMM's to be used to learn the decision boundaries 
between the classes. The intuition here is that many small HMM's can be a far 
more efficient way to characterize sequences than one big HMM. When many small 
HMM's cooperate to generate sequences, the mutual information between different 
parts of generated sequences scales linearly with the number of HMM's and only 
logarithmically with the number of hidden nodes in each HMM [5]. 

5 Derivative Updates for a Relative Density Network 

The learning algorithm for an RDN is just the backpropagation algorithm applied 
to the network architecture as defined in equations 7,8 and 9. The output layer is 
a distribution over class memberships of data point Xl:T, and this is parameterized 
as a softmax function. We minimize the cross-entropy loss function: 

K 

f = 2: tk logpk (10) 
k = l 

where Pk is the value of the kth output unit and tk is an indicator variable which is 
equal to 1 if k is the true class. Taking derivatives of this expression with respect 
to the inputs of the output units yields 

of 
-=tk-Pk (11) 
oak 
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The derivative of the output of the (mn)th hidden unit with respect to the output 
of ith HMM, £i, is 

oh(mn) 
~ = U(£m - £n)(l - U(£m - £n))(bim - bin) (13) 

where (bim - bin) is an indicator which equals +1 if i = m, -1 if i = n and zero 
otherwise. This derivative can be chained with the the derivatives backpropagated 
from the output to the hidden layer. 

For the final step of the backpropagation procedure we need the derivative of the 
log-likelihood of each HMM with respect to its parameters. In the experiments we 
use HMM's with a single, axis-aligned, Gaussian output density per state. We use 
the following notation for the parameters: 

• A: aij is the transition probability from state i to state j 

• II: 7ri is the initial state prior 

• f./, i : mean vector for state i 

• Vi: vector of variances for state i 

• 1-l: set of HMM parameters {A, II, f./" v} 

We also use the variable St to represent the state of the HMM at time t. We make 
use of the property of all latent variable density models that the derivative of the 
log-likelihood is equal to the expected derivative of the joint log-likelihood under 
the posterior distribution. For an HMM this means that: 

O£(Xl:TI1-l) '" 0 
o1-li = ~ P(Sl:Tlxl:T' 1-l) o1-l i log P(Xl:T' Sl:TI1-l) 

Sl:T 

The joint likelihood of an HMM is: 

(logP(Xl:T ' Sl:TI1-l)) = 
T 

L(b81 ,i)log 7ri + LL(b8"jb8 ,_1 ,i)log aij + 
t=2 i,j 

(14) 

~ ~(b8" i) [-~ ~IOgVi'd - ~ ~(Xt'd - f./,i,d) 2 /Vi,d] + canst (15) 

where (-) denotes expectations under the posterior distribution and (b8 , ,i) and 
(b8 , ,jb8 '_1 ,i) are the expected state occupancies and transitions under this dis­
tribution. All the necessary expectations are computed by the forward back­
ward algorithm. We could take derivatives with respect to this functional di­
rectly, but that would require doing constrained gradient descent on the prob­
abilities and the variances. Instead, we reparameterize the model using a 
softmax basis for probability vectors and an exponential basis for the vari­
ance parameters. This choice of basis allows us to do unconstrained op-
timization in the new basis. The new parameters are defined as follows: 

. _ exp(e;; ») . _ exp(e; ~») . _ (v) 
a'J - 2: (e (a» ) , 7r, - 2: (e ( ~»)' V"d - exp(Oi,d ) 

JI exp 1JI if exp i 

This results in the following derivatives: 

O£(Xl :T 11-l) 
oO(a) 

'J 

T 

L [(b8 , ,jb8 '_1 ,i) - (b8 '_1 ,i)aij ] 
t = 2 

(16) 
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• 
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T 

l)8st ,i)(Xt,d - f..li ,d)/Vi ,d (18) 
8f..li,d t= l 

8£(Xl:T 11£) 1 T 

80(v) 
2"l)8st ,i) [(Xt ,d - f..li ,d)2/Vi ,d - IJ (19) 

.,d t= l 

When chained with the error signal backpropagated from the output, these deriva­
tives give us the direction in which to move the parameters of each HMM in order 
to increase the log probability of the correct classification of the sequence. 

6 Experiments 

To evaluate the relative merits of the RDN, we compared it against an Alphanet 
on a speaker identification task. The data was taken from the CSLU 'Speaker 
Recognition' corpus. It consisted of 12 speakers uttering phrases consisting of 6 
different sequences of connected digits recorded multiple times (48) over the course 
of 12 recording sessions. The data was pre-emphasized and Fourier transformed 
in 32ms frames at a frame rate of lOms. It was then filtered using 24 bandpass, 
mel-frequency scaled filters. The log magnitude filter response was then used as the 
feature vector for the HMM's. This pre-processing reduced the data dimensionality 
while retaining its spectral structure. 

While mel-cepstral coefficients are typically recommended for use with axis-aligned 
Gaussians, they destroy the spectral structure of the data, and we would like to 
allow for the possibility that of the many HMM's some of them will specialize on 
particular sub-bands of the frequency domain. They can do this by treating the 
variance as a measure of the importance of a particular frequency band - using 
large variances for unimportant bands, and small ones for bands to which they pay 
particular attention. 

We compared the RDN with an Alphanet and three other models which were im­
plemented as controls. The first of these was a network with a similar architecture 
to the RDN (as shown in figure 2), except that instead of fixed connections of ±1, 
the hidden units have a set of adaptable weights to all M of the HMM's. We refer 
to this network as a comparative density net (CDN). A second control experiment 
used an architecture similar to a CDN without the hidden layer, i.e. there is a single 
layer of adaptable weights directly connecting the HMM's with the softmax output 
units. We label this architecture a CDN-l. The CDN-l differs from the Alphanet 
in that each softmax output unit has adaptable connections to the HMM's and we 
can vary the number of HMM's, whereas the Alphanet has just one HMM per class 
directly connected to each softmax output unit. Finally, we implemented a version 
of a network similar to an Alphanet, but using a mixture of Gaussians as the in­
put density model. The point of this comparison was to see if the HMM actually 
achieves a benefit from modelling the temporal aspects of the speaker recognition 
task. 

In each experiment an RDN constructed out of a set of, M, 4-state HMM's was 
compared to the four other networks all matched to have the same number of free 
parameters, except for the MoGnet. In the case of the MoGnet, we used the same 
number of Gaussian mixture models as HMM's in the Alphanet, each with the 
same number of hidden states. Thus, it has fewer parameters, because it is lacking 
the transition probabilities of the HMM. We ran the experiment four times with 
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Figure 3: Results of the experiments for an RDN with (a) 12, (b) 16, (c) 20 and 
(d) 24 HMM's. 

values of M of 12, 16, 20 and 24. For the Alphanet and MoGnet we varied the 
number of states in the HMM's and the Gaussian mixtures, respectively. For the 
CDN model we used the same number of 4-state HMM's as the RDN and varied 
the number of units in the hidden layer of the network. Since the CDN-1 network 
has no hidden units, we used the same number of HMM's as the RDN and varied 
the number of states in the HMM. The experiments were repeated 10 times with 
different training-test set splits. All the models were trained using 90 iterations of 
a conjugate gradient optimization procedure [6] . 

7 Results 

The boxplot in figure 3 shows the results of the classification performance on the 
10 runs in each of the 4 experiments. Comparing the Alphanet and the RDN we 
see that the RDN consistently outperforms the Alphanet. In all four experiments 
the difference in their performance under a paired t-test was significant at the level 
p < 0.01. This indicates that given a classification network with a fixed number of 
parameters, there is an advantage to using many small HMM's and using all the 
pairwise information about an observed sequence, as opposed to using a network 
with a single large HMM per class. 

In the third experiment involving the MoGnet we see that its performance is com­
parable to that of the Alphanet. This suggests that the HMM's ability to model the 
temporal structure of the data is not really necessary for the speaker classification 
task as we have set it Up.3 Nevertheless, the performance of both the Alphanet and 

3If we had done text-dependent speaker identification, instead of multiple digit phrases 



the MoGnet is less than the RDN. 

Unfortunately the CDN and CDN-l networks perform much worse than we ex­
pected. While we expected these models to perform similarly to the RDN, it seems 
that the optimization procedure takes much longer with these models. This is prob­
ably because the small initial weights from the HMM's to the next layer severely 
attenuate the backpropagated error derivatives that are used to train the HMM's. 
As a result the CDN networks do not converge properly in the time allowed. 

8 Conclusions 

We have introduced relative density networks, and shown that this method of dis­
criminatively learning many small density models in place of a single density model 
per class has benefits in classification performance. In addition, there may be a 
small speed benefit to using many smaller HMM's compared to a few big ones. 
Computing the probability of a sequence under an HMM is order O(TK2 ), where T 
is the length of the sequence and K is the number of hidden states in the network. 
Thus, smaller HMM's can be evaluated faster. However, this is somewhat counter­
balanced by the quadratic growth in the size of the hidden layer as M increases. 
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