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Abstract 
A challenging, unsolved problem in the speech recognition com­
munity is recognizing speech signals that are corrupted by loud, 
highly nonstationary noise. One approach to noisy speech recog­
nition is to automatically remove the noise from the cepstrum se­
quence before feeding it in to a clean speech recognizer. In previous 
work published in Eurospeech, we showed how a probability model 
trained on clean speech and a separate probability model trained 
on noise could be combined for the purpose of estimating the noise­
free speech from the noisy speech. We showed how an iterative 2nd 
order vector Taylor series approximation could be used for prob­
abilistic inference in this model. In many circumstances, it is not 
possible to obtain examples of noise without speech. Noise statis­
tics may change significantly during an utterance, so that speech­
free frames are not sufficient for estimating the noise model. In this 
paper, we show how the noise model can be learned even when the 
data contains speech. In particular, the noise model can be learned 
from the test utterance and then used to de noise the test utterance. 
The approximate inference technique is used as an approximate E 
step in a generalized EM algorithm that learns the parameters of 
the noise model from a test utterance. For both Wall Street Jour­
nal data with added noise samples and the Aurora benchmark, we 
show that the new noise adaptive technique performs as well as or 
significantly better than the non-adaptive algorithm, without the 
need for a separate training set of noise examples. 

1 Introduction 

Two main approaches to robust speech recognition include "recognizer domain ap­
proaches" (Varga and Moore 1990; Gales and Young 1996), where the acoustic 
recognition model is modified or retrained to recognize noisy, distorted speech, and 
"feature domain approaches" (Boll 1979; Deng et al. 2000; Attias et al. 2001; Frey 
et al. 2001), where the features of noisy, distorted speech are first denoised and then 
fed into a speech recognition system whose acoustic recognition model is trained on 
clean speech. 

One advantage of the feature domain approach over the recognizer domain approach 
is that the speech modeling part of the denoising model can have much lower com-



plexity than the full acoustic recognition model. This can lead to a much faster 
overall system, since the denoising process uses probabilistic inference in a much 
smaller model. Also, since the complexity of the denoising model is much lower 
than the complexity of the recognizer, the denoising model can be adapted to new 
environments more easily, or a variety of denoising models can be stored and applied 
as needed. 

We model the log-spectra of clean speech, noise, and channel impulse response 
function using mixtures of Gaussians. (In contrast, Attias et al. (2001) model 
autoregressive coefficients.) The relationship between these log-spectra and the 
log-spectrum of the noisy speech is nonlinear, leading to a posterior distribution 
over the clean speech that is a mixture of non-Gaussian distributions. We show 
how a variational technique that makes use of an iterative 2nd order vector Taylor 
series approximation can be used to infer the clean speech and compute sufficient 
statistics for a generalized EM algorithm that can learn the noise model from noisy 
speech. 

Our method, called ALGONQUIN, improves on previous work using the vector 
Taylor series approximation (Moreno 1996) by modeling the variance of the noise 
and channel instead of using point estimates, by modeling the noise and channel as a 
mixture mixture model instead of a single component model, by iterating Laplace's 
method to track the clean speech instead of applying it once at the model centers, 
by accounting for the error in the nonlinear relationship between the log-spectra, 
and by learning the noise model from noisy speech. 

2 ALGONQUIN's Probability Model 

For clarity, we present a version of ALGONQUIN that treats frames of log-spectra 
independently. The extension of the version presented here to HMM models of 
speech, noise and channel distortion is analogous to the extension of a mixture of 
Gaussians to an HMM with Gaussian outputs. 

Following (Moreno 1996), we derive an approximate relationship between the log 
spectra of the clean speech, noise, channel and noisy speech. Assuming additive 
noise and linear channel distortion, the windowed FFT Y(j) for a particular frame 
(25 ms duration, spaced at 10 ms intervals) of noisy speech is related to the FFTs 
of the channel H(j), clean speech 5(j) and additive noise N(j) by 

Y(j) = H(j)5(j) + N(j). (1) 

We use a mel-frequency scale, in which case this relationship is only approximate. 
However, it is quite accurate if the channel frequency response is roughly constant 
across each mel-frequency filter band. 

For brevity, we will assume H(j) = 1 in the remainder of this paper. Assuming 
there is no channel distortion simplifies the description of the algorithm. To see 
how channel distortion can be accounted for in a nonadaptive way, see (Frey et al. 
2001). The technique described in this paper for adapting the noise model can be 
extended to adapting the channel model. 

Assuming H(j) = 1, the energy spectrum is obtained as follows: 

IY(j)1 2 = Y(j)*Y(j) = 5(j)* 5(j) + N(j)* N(j) + 2Re(N(j)* 5(j)) 

= 15(j)12 + IN(j)12 + 2Re(N(j)* 5(j)) , 

where "*,, denotes complex conjugate. If the phase of the noise and the speech are 
uncorrelated, the last term in the above expression is small and we can approximate 



the energy spectrum as follows: 

IYUW ~ ISUW + INUW· (2) 
Although we could model these spectra directly, they are constrained to be non­
negative. To make density modeling easier, we model the log-spectrum instead. An 
additional benefit to this approach is that channel distortion is an additive effect in 
the log-spectrum domain. 

Letting y be the vector containing the log-spectrum log IY(:W, and similarly for s 
and n , we can rewrite (2) as 

exp(y) ~ exp(s) + exp(n) = exp(s) 0 (1 + exp(n - s)) , 

where the expO function operates in an element-wise fashion on its vector argument 
and the "0" symbol indicates element-wise product. 

Taking the logarithm, we obtain a function gO that is an approximate mapping of 
sand n to y (see (Moreno 1996) for more details): 

y ~ g([~]) = s + In(l + exp(n - s)). (4) 

"T" indicates matrix transpose and InO and expO operate on the individual elements 
of their vector arguments. 

Assuming the errors in the above approximation are Gaussian, the observation 
likelihood is 

p(yls,n) =N(y;g([~]),W), (5) 

where W is the diagonal covariance matrix of the errors. A more precise approxi­
mation to the observation likelihood can be obtained by writing W as a function of 
s and n , but we assume W is constant for clarity. 

Using a prior p(s, n), the goal of de noising is to infer the log-spectrum of the clean 
speech s , given the log-spectrum ofthe noisy speech y. The minimum squared error 
estimate of sis s = Is sp(sly) , where p(sly) ex InP(yls, n)p(s, n). This inference is 
made difficult by the fact that the nonlinearity g([s n]T) in (5) makes the posterior 
non-Gaussian even if the prior is Gaussian. In the next section, we show how an it­
erative variational method that uses a 2nd order vector Taylor series approximation 
can be used for approximate inference and learning. 

We assume that a priori the speech and noise are independent - p(s , n) = p(s)p(n) 
- and we model each using a separate mixture of Gaussians. cS = 1, ... , NS is the 
class index for the clean speech and en = 1, ... ,Nn is the class index for the noise. 
The mixing proportions and Gaussian components are parameterized as follows: 

p(s) = LP(cS)p(slcS), p(CS) =7r~s , p(slcS) =N(s;JL~s ,~~s ), 
C S 

We assume the covariance matrices ~~s and ~~n are diagonal. 

Combining (5) and (6), the joint distribution over the noisy speech, clean speech 
class, clean speech vector, noise class and noise vector is 

p(y , s , cs, n , en) = N(y; g([~]), w)7r~sN(s; JL~ s , ~~s )7r~N(n; JL~n , ~~n). (7) 

Under this joint distribution, the posterior p(s, nly) is a mixture of non-Gaussian 
distributions. In fact, for a given speech class and noise class, the posterior 
p(s, nics, en , y) may have multiple modes. So, exact computation of s is intractable 
and we use an approximation. 



3 Approximating the Posterior 
For the current frame of noisy speech y, ALGONQUIN approximates the posterior 
using a simpler, parameterized distribution, q: 

p(s ,cS, n,cnly) ~ q(s,cS,n,cn). 

The "variational parameters" of q are adjusted to make this approximation accurate, 
and then q is used as a surrogate for the true posterior when computing § and 
learning the noise model (c.f. (Jordan et al. 1998)). 

For each cS and en, we approximate p(s, nics, en, y) by a Gaussian, 

(9) 

where 1J~'en and 1J~'en are the approximate posterior means of the speech and noise 
for classes cS and en, and <P~~en, <P~.r;,n and <P~::'en specify the covariance matrix for 
the speech and noise for classes cS and en. Since rows of vectors in (4) do not interact 
and since the likelihood covariance matrix q, and the prior covariance matrices ~~. 
and ~~n are diagonal, the matrices <P~~ en, <P~.r;,n and <P~::'en are diagonal. 

The posterior mixing proportions for classes cS and en are q( cS , en) = Pc' en. The 
approximate posterior is given by q(s,n,cs,cn) = q(s , nlcs ,cn)q(cS, en). 

The goal of variational inference is to minimize the relative entropy (Kullback­
Leibler divergence) between q and p: 

K "''''11 ( S n) q(s , n ,cS,cn) = ~ ~ q s , n , c ,c In ( S n I ). 
c' en s n P s , c , n , c y 

This is a particularly good choice for a cost function, because, since lnp(y) doesn't 
depend on the variational parameters, minimizing K is equivalent to maximizing 

() K "''''11 ( S n) p(s,cS,n,cn,y) F = lnp y - = ~ ~ q s , n , c ,c In ( S n) , 
e' en s n q s, n, c ,c 

which is a lower bound on the log-probability of the data. So, variational inference 
can be used as a generalized E step (Neal and Hinton 1998) in an algorithm that 
alternatively maximizes a lower bound on lnp(y) with respect to the variational 
parameters and the noise model parameters, as described in the next section. 

Variational inference begins by optimizing the means and variances in (9) for each 
CS and en. Initially, we set the posterior means and variances to the prior means 
and variances. F does not have a simple form in these variational parameters. 
So, at each iteration, we make a 2nd order vector Taylor series approximation of 
the likelihood, centered at the current variational parameters, and maximize the 
resulting approximation to F. The updates are 

where g' 0 is a matrix of derivatives whose rows correspond to the noisy speech y 
and whose columns correspond to the clean speech and noise [s n]. 



The inverse posterior covariance matrix is the sum of the inverse prior covariance 
matrix and the inverse likelihood covariance matrix, modified by the Jacobian g' 0 
for the mapping from s and n to y 

The posterior means are moved towards the prior means and toward values that 
match the observation y. These two effects are weighted by the inverse prior co­
variance matrix and the inverse likelihood covariance matrix. 

After iterating the above updates (in our experiments, 3 to 5 times) for each eS and 
en, the posterior mixing proportions that maximize :F are computed: 

where A is a normalizing constant that is computed so that L e.en Pe'en = 1. The 
minimum squared error estimate of the clean speech, s, is 

We apply this algorithm on a frame-by-frame basis, until all frames in the test 
utterance have been denoised. 

4 Speed 

Since elements of s, nand y that are in different rows do not interact in (4), the 
above matrix algebra reduces to efficient scalar algebra. For 256 speech components, 
4 noise components and 3 iterations of inference, our unoptimized C code takes 60 
ms to denoise each frame. We are confident that this time can be reduced by an 
order of magnitude using standard implementation tricks. 

5 Adapting the Noise Model Using Noisy Speech 

The version of ALGONQUIN described above requires that a mixture model of the 
noise be trained on noise samples, before the log-spectrum of the noisy speech can 
be denoised. Here, we describe how the iterative inference technique can be used as 
the E step in a generalized EM algorithm for learning the noise model from noisy 
speech. 

For a set of frames y(1), . .. , yeT) in a noisy test utterance, we construct a total 
bound 

:F = L:F(t) :::; Llnp(y(t)). 
t t 

The generalized EM algorithm alternates between updating one set of variational 
(t) n(t) t £ h f tIT d ... T· h parameters Pe.en, 11 e'en, e c. or eac rame = , ... , ,an maximizIng.r WIt 

respect to the noise model parameters 7r~n, J.t~n and ~~n. Since:F:::; Ltlnp(y(t)), 
this procedure maximizes a lower bound on the log-probability of the data. The use 
of the vector Taylor series approximations leads to an algorithm that maximizes an 
approximation to a lower bound on the log-probability of the data. 



Restaurant Street Airport Station Average 
20 dB 2.12 2.96 1.82 1.73 2.16 
15 dB 3.87 4.78 2.27 3.24 3.54 
10 dB 9.18 10.73 5.49 6.48 7.97 
5 dB 20.51 13.52 14.97 15.18 18.54 
o dB 47.04 45.68 36.00 37.24 41.49 
-5dB 78.69 72.34 69.04 67.26 71.83 

Average 16.54 17.53 12.11 12.77 14.74 

Table 1: Word error rates (in percent) on set B of the Aurora test set, for the 
adaptive version of ALGONQUIN with 4 noise componentsset. 

Setting the derivatives of :F with respect to the noise model parameters to zero, we 
obtain the following M step updates: 

~n ('"' '"' (t) (opnn(t) +d· (( n (t) n)( n (t) n )T))) / ('"' '"' (t) ) en +--- ~ ~ Pe. en e' en lag 11e' en -#-ten 11e' en -#-ten ~ ~ P e. en . 
t c B t c B 

The variational parameters can be updated multiple times before updating the 
model parameters, or the variational parameters can updated only once before up­
dating the model parameters. The latter approach may converge more quickly in 
some situations. 

6 Experimental Results 

After training a 256-component speech model on clean speech, we used the 
adaptive version of ALGONQUIN to denoise noisy test utterances on two 
tasks: the publically available Aurora limited vocabulary speech recognition task 
(http://www.etsi.org/technicalactiv/dsr.htm); the Wall Street Journal (WSJ) large 
vocabulary speech recognition task, with Microsoft's Whisper speech recognition 
system. 

We obtained results on all 48 test sets from partitions A and B of the Aurora 
database. Each set contains 24,000 sentences that have been corrupted from one of 
4 different noise types and one of 6 different signal to noise ratios. Table 1 gives 
the error rates for the adaptive version of ALGONQUIN, with 4 noise components. 
These error rates are superior to error rates obtained by our spectral subtraction 
technique for (Deng et al. 2000) , and highly competitive with other results on the 
Aurora task. 

Table 2 compares the performances of the adaptive version of ALGONQUIN and 
the non-adaptive version. For the non-adaptive version, 20 non-speech frames are 
used to estimate the noise model. For the adaptive version, the parameters are 
init ialized using 20 non-speech frames and then 3 iterations of generalized EM are 
used to learn the noise model. The average error rate over all noise types and 
SNRs for set B of Aurora drops from 17.65% to 15.19% when the noise adaptive 
algorithm is used to update the noise model. This is a relative gain of 13.94%. 
When 4 components are used there is a further gain of 2.5%. 

The Wall Street Journal test set consists of 167 sentences spoken by female speak­
ers. The Microsoft Whisper recognizer with a 5,000 word vocabulary was used to 
recognize these sentences. Table 2 shows that the adaptive version of algonquin 



WER WER Reduction WER Reduction 
20 frames 1 comp in WER 4 comps in WER 

Aurora, Set A 18.10% 15.91% 12.10% 15.62% 13.70% 
Aurora, Set B 17.65% 15.19% 13.94% 14.74% 16.49% 

WSJ, XD14, 10dB 30.00% 21.8% 27.33% 21.50% 28.33% 
WSJ, XD10, 10dB 21.80% 20.6% 5.50'70 20.6% 5.50 '70 

Table 2: Word error rates (WER) and percentage reduction in WER for the Aurora 
test data and the Wall Street Journal test data, without scaling. 

performs better than the non-adaptive version, especially on noise type "XD14" , 
which consists of the highly-nonstationary sound of a jet engine shutting down. For 
noise type "XD1O", which is stationary noise, we observe a gain, but we do not see 
any further gain for multiple noise components. 

7 Conclusions 
A far as variational methods go, ALGONQUIN is a fast technique for denoising log­
spectrum or cepstrum speech feature vectors. ALGONQUIN improves on previous 
work using the vector Taylor series approximation, by using multiple component 
speech and noise models, and it uses an iterative variational method to produce 
accurate posterior distributions for speech and noise. By employing a generalized 
EM method, ALGONQUIN can estimate a noise model from noisy speech data. 

Our results show that the noise adaptive ALGONQUIN algorithm can obtain bet­
ter results than the non-adaptive version. This is especially important for non­
stationary noise, where the non-adaptive algorithm relies on an estimate of the 
noise based on a subset of the frames , but the adaptive algorithm uses all the 
frames of the utterance, even those that contain speech. 

A different approach to denoising speech features is to learn time-domain models. 
Attias et al. (2001) report results on a non-adaptive time-domain technique. Our 
results cannot be directly compared with theirs, since our results are for unscaled 
data. Eventually, the two approaches should be thoroughly compared. 
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