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Abstract 

In many discrimination problems a large amount of data is available but 
only a few of them are labeled. This provides a strong motivation to 
improve or develop methods for semi-supervised learning. In this paper, 
boosting is generalized to this task within the optimization framework of 
MarginBoost . We extend the margin definition to unlabeled data and 
develop the gradient descent algorithm that corresponds to the resulting 
margin cost function. This meta-learning scheme can be applied to any 
base classifier able to benefit from unlabeled data. We propose here to 
apply it to mixture models trained with an Expectation-Maximization 
algorithm. Promising results are presented on benchmarks with different 
rates of labeled data. 

1 Introduction 

In semi-supervised classification tasks, a concept is to be learnt using both labeled 
and unlabeled examples. Such problems arise frequently in data-mining where the 
cost of the labeling process can be prohibitive because it requires human help as in 
video-indexing, text-categorization [12] and medical diagnosis. While some works 
proposed different methods [16] to learn mixture models [12], [1], SVM [3], co­
trained machines [5] to solve this task, no extension has been developed so far for 
ensemble methods such as boosting [7, 6]. Boosting consists in building sequen­
tially a linear combination of base classifiers that focus on the difficult examples. 
For AdaBoost and extensions such as MarginBoost [10], this stage-wise procedure 
corresponds to a gradient descent of a cost functional based on a decreasing function 
of the margin, in the space of linear combinations of base classifiers. 

We propose to generalize boosting to semi-supervised learning within the frame­
work of optimization. We extend the margin notion to unlabeled data, derive the 
corresponding criterion to be maximized, and propose the resulting algorithm called 
Semi-Supervised MarginBoost (SSMBoost). This new method enhances our previ-



ous work [9] based on a direct plug-in extension of AdaBoost in the sense that all 
the ingredients of the gradient algorithm such as the gradient direction and the 
stopping rule are defined from the expression of the new cost function. Moreover , 
while the algorithm has been tested using the mixtures of models [1], 55MBoost 
is designed to combine any base classifiers that deals with both labeled and unla­
beled data. The paper begins with a brief presentation of MarginBoost (section 2). 
Then, in section 3, the 55MBoost algorithm is presented. Experimental results are 
discussed in section 5 and we conclude in section 6. 

2 Boosting with MarginBoost 

Boosting [7, 6, 15] aims at improving the performance of any weak "base clas­
sifier" by linear combination. We focus here on normalized ensemble classifiers 
gt E LinCH) whose normalized1 coefficients are noted aT = I ~: I and each base 
classifier with outputs in [-1, 1] is hT E 1{: 

t 

gt(x) = L aThT(x) (1) 
T=l 

Different contributions [13, 14],[8], [10] have described boosting within an optimiza­
tion scheme, considering that it carries out a gradient descent in the space of linear 
combinations of base functions. We have chosen the MarginBoost algorithm, a vari­
ant of a more general algorithm called Any Boost [10], that generalizes AdaBoost 
and formally justifies the interpretation in terms of margin. If S is the training 
sample {(Xi,Yi) , i = l..l}, MarginBoost, described in Fig. 1, minimizes the cost 
functional C defined for any scalar decreasing function c of the margin p : 

I 

C(gt) = L c(p(gt(Xi), Yi))) (2) 
i=l 

Instead of taking exactly ht+l = - \1C(gt) which does not ensure that the resulting 
function gt+! belongs to Lin(1{), ht+! is chosen such as the inner product2 - < 
\1C(gt), ht+l > is maximal. The equivalent weighted cost function to be maximized 
can thus be expressed as : 

JF = L Wt(i)Yiht+! (Xi) 
iES 

3 Generalizing MarginBoost to semi-supervised 
classification 

3.1 Margin Extension 

(3) 

For labeled data, the margin measures the quality of the classifier output. When no 
label is observed, the usual margin cannot be calculated and has to be estimated. 
A first estimation could be derived from the expected margin EypL(gt(X) , y). We 
can use the output of the classifier (gt(x) + 1)/2 as an estimate of the posterior 
probability P(Y = +llx). This leads to the following margin pi; which depends on 
the input and is linked with the response of the classifier: 

lOr> 0 and L1 norm is used for normalization: IOrl = L~=l Or 

2< f, 9 >= LiES f(X;)g(Xi) 



Let wo(i) = l/l , i = 1, ... ,l. 
Let go(x) = 0 
For t = 1 ... T (do the gradient descent): 

1. Learn a gradient direction htH E 1i with a high value of 
J{ = L,iEswt(i)YihtH(Xi) 

2. Apply the stopping rule: if J{ ::::: L,iES Wt(i)Yigt(Xi) then return 
gt else go on. 

3. Choose a step-length for the obtained direction by a line-search or 
by fixing it as a constant f 

4 Add the new direction to obtain 9 = (l a t I9t+a ttlhtt') 
. HI lattl l 

5. Fix the weight distribution: Wt 1 = c'(p(9ttl(Xi),Yi)) + 2: jE S c'(p(9ttl(Xj),Yj)) 

Figure 1: MarginBoost algorithm (with L1 normalization of the combination coefficients) 

Another way of defining the extended margin is to use directly the maximum a 
posteriori estimate of the true margin. This MAP estimate depends on the sign of 
the classifier output and provides the following margin definition pC; : 

(5) 

3.2 Semi-Supervised MarginBoost : generalization of marginBoost to 
deal with unlabeled data 

The generalization of the margin can be used to define an appropriate cost functional 
for the semi-supervised learning task. Considering that the training sample S is now 
divided into two disjoint subsets L for labeled data and U for unlabeled data, the 
cost falls into two parts involving PL = P and PU: 

(6) 
iEL iEU 

The maximization of - < \lC(gt), htH > is equivalent to optimize the new quantity 
JtS that falls now into two terms J{ = Jf + J? The first term one can be directly 
obtained from equation (3) : 

Jf = LWt(i).YihtH(Xi) (7) 
iEL 

The second term, J? , can be expressed as following: 

(8) 



with the weight distribution Wt now defined as : 

{ 
c'(pL(9t(Xi),Yi)) 

( .) _ IWt l 
Wt z - c'(PU(9t(Xi))) 

IWt l 

if i E L 
.. with IWt I = 2:= Wt (i) 
If z E U iES 

(9) 

This expression of JP comes directly from differential calculus and the chosen inner 
product: 

( )() {
YiC'(Pd9t(Xi),Yi)) if x = Xi and i E L 

'VC gt Xi = c'(p (g (x.))) apU(9t(Xi)) if x = x, and i E U 
U t t a9t(Xi) 0 

(10) 

Implementation of 55MBoost with margins pI[; and Pu requires their derivatives. 
Let us notice that the "signed margin", pus, is not derivable at point O. However, 
according to the results of convex analysis (see for instance [2]), it is possible to 
define the "sub derivative' of Pus since it is a continuous and convex function. The 
value of the sub derivative corresponds here to the average value of the right and 
left derivatives. 

apUS(gt(Xi)) = {sign(g(Xi)) 
agt (Xi) 0 

if X :f": 0 
if x = 0 

And, for the "squared margin" Pu9 , we have: 

apu9 (gt(Xi)) = 2g(Xi) 
agt(Xi) 

(11) 

(12) 

This completes the set of ingredients that must be incorporated into the algorithm 
of Fig. 1 to obtain 55MBoost. 

4 Base Classifier 

The base classifier should be able to make use of the unlabeled data provided by the 
boosting algorithm. Mixture models are well suited for this purpose, as shown by 
their extensive use in clustering. Hierarchical mixtures provide flexible discrimina­
tion tools, where each conditional distribution f(xlY = k) is modelled by a mixture 
of components [4]. At the high level, the distribution is described by 

K 

f(x; if» = 2:= Pk!k (x; Ok) , (13) 
k=l 

where K is the number of classes, Pk are the mixing proportions, Ok the conditional 
distribution parameters, and if> denotes all parameters {Pk; 0df=l. The high-level 
description can also be expressed as a low-level mixture of components, as shown 
here for binary classification: 

Kl K2 

f(x;if» = 2:= PkJkl(X;Okl) + 2:= Pk2!k2(X;Ok2) (14) 

With this setting, the EM algorithm is used to maximize the log-likelihood with 
respect to if> considering the incomplete data is {Xi, Yi}~= l and the missing data 
is the component label Cik, k = 1, ... , K 1 + K2 [11]. An original implementation 
of EM based on the concept of possible labels [1] is considered here. It is well 
adapted to hierarchical mixtures, where the class label Y provides a subset of possible 
components. When Y = 1 the first Kl modes are possible, when Y = -1 the last 
K2 modes are possible, and when an example is unlabeled, all modes are possible. 



A binary vector Zi E {0,1}(Kl+K2) indicates the components from which feature 
vector Xi may have been generated, in agreement with the assumed mixture model 
and the (absence of) label Yi. Assuming that the training sample {Xi, Zi }i=l is i.i .d , 
the weighted log-likelihood is given by 

I 

L(<I> ;{Xi,zdi=l = LWt(i) log (j(Xi,zi;<I») , (15) 
i=l 

where Wt(i) are provided by boosting at step t. L is maximized using the following 
EM algorithm: 

E-Step Compute the expectation of L( <I>; {Xi , zdi=l) conditionally to {Xi , zdi=l 
and the current value of <I> (denoted <I>q): 

with Uik 

I Kl+K2 
L L Wt(i)Uik log (Pk!k(Xi; Ok)) 
i=l k=l 

ZikPk!k(Xi; Ok) 
L£ ZUP£!£(Xi; O£) 

M-Step Maximize Q(<I>I<I>q) with respect to <I>. 

(16) 

Assuming that each mode k follows a normal distribution with mean ILk' 
and covariance ~k ' <I>q+l = {ILk+! ; ~k+!;Pk+l}f~iK2 is given by: 

(17) 

(18) 

5 Experimental results 

Tests of the algorithm are performed on three benchmarks of the boosting literature: 
twonorm and ringnorm [6] and banana [13]. Information about these datasets and 
the results obtained in discrimination are available at www.first.gmd.de/-raetsch/ 
10 different samples were used for each experiment. 

We first study the behavior of 55MBoost according the evolution of the test error 
with increasing rates of unlabeled data (table 1). We consider five different settings 
where 0%, 50%, 75%, 90% and 95% of labels are missing. 55MB is tested for the 
margins P~ and Pu with c(x) = exp( -x). It is compared to mixture models and 
AdaBoost. 55MBoost and AdaBoost are trained identically, the only difference 
being that AdaBoost is not provided with missing labels. 

Both algorithms are run for T = 100 boosting steps, without special care of overfit­
ting. The base classifier (called here base(EM)) is a hierarchical mixture model with 
an arbitrary choice of 4 modes per class but the algorithm (which may be stalled 
in local minima) is restarted 100 times from different initial solutions, and the best 
final solution (regarding training error rate) is selected. We report mean error rates 
together with the lower and upper quartiles in table 1. For sake of space, we did 
not display the results obtained without missing labels: in this case, AdaBoost and 
55MBoost behave nearly identically and better than EM only for Banana. 

For rates of unlabeled data inferior to 95%, 55MBoost beats slightly AdaBoost 
for Ringnorm and Twonorm (except for 75%) but is not able to do as well as 



Table 1: Mean error rates (in %) and interquartiles obtained with 4 different percentages 
of unlabeled data for mixture models base(EM), AdaBoost and 55MBoost. 

Ringnorm 50% 75% 90% 95% 

base(EM) 2.1 [ 1.7, 2.1] 4.3[ 1.9, 5.7] 9.5 [ 2.7,12.0] 23.7 [14.5,27.0] 
AdaBoost 1.8[ 1.6, 2.0] 3.1[ 1.9, 4.1] 11.5[ 4.2 ,12.1] 28.7[11.5,37.6] 
55MBoost pS 1. 7[ 1.5, 1.8] 2.0 [ 1.5, 2.4] 3.7[ 2.1, 4.8] 6.9[ 5.6,10.7] 
55MBoost pg 1. 7[ 1.6, 1.8] 2.O[ 1.4, 2.5] 4.5 [ 2.2, 3.6] 8.1 [ 4.2, 9.0] 

Twonorm 50% 75% 90% 95% 

base(EM) 3.2 [ 2.7, 3.1] 6.5[ 3.0, 9.0] 20.6[10.3,22.5] 24.8[18.3,31.9] 
AdaBoost 3.2[ 2.9, 3.2] 3.2[ 3.0, 3.5] 11.0[ 5.2,14.2] 38.9[29.4,50.0] 
55MBoost pS 2.7[ 2.5, 2.9] 3.4 [ 2.8, 4.3] 10.1 [ 5.8,13.6] 20.4[11.9,32.3] 
55MBoost pg 2.7[ 2.5, 2.8] 3.4 [ 2.8, 4.2] 11.0[ 5.6,16.2] 21.1 [1 2.5,30.8] 

Banana 50% 75% 90% 95% 

base(EM) 18.2[16.7,18.6] 21.8[18.0,25.0] 26.1[20.7,29.8] 31.7[23.8,35.8] 
AdaBoost 12.6[11.7,13.1] 15.2 [13.0,16.8] 22.1 [18.0,24.3] 37.5 [32.2,42.2] 
55MBoost pS 13.3 [12.7,14.3] 17.0[15.3,17.8] 22.2[18.0,28.0] 28.3 [20.2,35.2] 
55MBoost pg 13.3[12.8,14.2] 16.9[15.6,17.8] 22.8[18.3,29.3] 28.6 [21.5,34.2] 

AdaBoost on Banana data. One possible explanation is that the discrimination 
frontiers involved in the banana problem are so complex that the labels really bring 
crucial informations and thus adding unlabeled data does not help in such a case. 

Nevertheless , at rate 95% which is the most realistic situation, the margin Pu obtains 
the minimal error rate for each of the three problems. It shows that it is worth 
boosting and using unlabeled data. 

As there is no great difference between the two proposed margins, we conducted 
further experiments using only the Pu' 
Second, in order to study the relation between the presence of noise in the dataset 
and the ability of 55MBoost to enhance generalization performance, we draw in 
Fig. 2, the test errors obtained for problems with different values of Bayes error 
when varying the rate of labeled examples. We see that even for difficult tasks (very 
noisy problems), the degradation in performance for large subsets of unlabeled data 
is still low. This reflects some consistency in the behavior of our algorithm. 

Third, we test the sensibility of 55MBoost to overfitting. Overfitting can usually 
be avoided by techniques such as early stopping, softenizing of the margin ([13], 
[14]) or using an adequate margin function such as 1 - tanh(p) instead of exp( -p) 
[10]. Here we keep using c = exp and ran 55MBoost with a maximal number of 
step T = 1000 with 95% of unlabeled data. Of course, this does not correspond to 
a realistic use of boosting in practice but it allows to check if the algorithm behaves 
consistently in terms of gradient steps number. It is remarkable that no overfitting 
is observed and in the Twonorm case (see Fig. 3), the test error still decreases 
! We also observe that the standard error deviation is reduced at the end of the 
process. For the banana problem (see Fig. 3 b.), we observe a stabilization near 
the step t = 100. A massive presence of unlabeled data implies thus a regularizing 
effect. 
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Figure 2: Consistency of the 55MBoost behavior: evolution of test error versus the missing 
labels rate with respect to various Bayes error (twonorm ). 
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Figure 3: Evolution of Test error with respect to maximal number T of iterations with 
95% of missing labels (Two norm and Banana). 



6 Conclusion 

MarginBoost algorithm has been extended to deal with both labeled and unlabeled 
data. Results obtained on three classical benchmarks of boosting litterature show 
that it is worth using additional information conveyed by the patterns alone. No 
overfitting was observed during processing 55MBoost on the benchmarks when 
95% of the labels are missing: this should mean that the unlabeled data should 
playa regularizing role in the ensemble classifier during the boosting process. After 
applying this method to a large real dataset such as those of text-categorization, 
our future works on this theme will concern the use of the extended margin cost 
function on the base classifiers itself like multilayered perceptrons or decision trees. 
Another approach could also be conducted from the more general framework of 
AnyBoost that optimize any differential cost function. 
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