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Abstract

We address the problem of non-convergence of online reinforcement
learning algorithms (e.g., Q learning and SARSA(A)) by adopt­
ing an incremental-batch approach that separates the exploration
process from the function fitting process. Our BFBP (Batch Fit
to Best Paths) algorithm alternates between an exploration phase
(during which trajectories are generated to try to find fragments
of the optimal policy) and a function fitting phase (during which
a function approximator is fit to the best known paths from start
states to terminal states). An advantage of this approach is that
batch value-function fitting is a global process, which allows it to
address the tradeoffs in function approximation that cannot be
handled by local, online algorithms. This approach was pioneered
by Boyan and Moore with their GROWSUPPORT and ROUT al­
gorithms. We show how to improve upon their work by applying
a better exploration process and by enriching the function fitting
procedure to incorporate Bellman error and advantage error mea­
sures into the objective function. The results show improved per­
formance on several benchmark problems.

1 Introduction

Function approximation is essential for applying value-function-based reinforcement
learning (RL) algorithms to solve large Markov decision problems (MDPs). How­
ever, online RL algorithms such as SARSA(A) have been shown experimentally to
have difficulty converging when applied with function approximators. Theoretical
analysis has not been able to prove convergence, even in the case-of linear function
approximators. (See Gordon (2001), however, for a non-divergence result.) The
heart of the problem is that the approximate values of different states (e.g., 81 and
82) are coupled through the parameters of the function approximator. The optimal
policy at state 81 may require increasing a parameter, while the optimal policy at
state 82 may require decreasing it. As a result, algorithms based on local parameter
updates tend to oscillate or even to diverge.

To avoid this problem, a more global approach is called for-an approach that



can consider Sl and S2 simultaneously and find a solution that works well in both
states. One approach is to formulate the reinforcement learning problem as a global
search through a space of parameterized policies as in the policy gradient algorithms
(Williams, 1992; Sutton, McAllester, Singh, & Mansour, 2000; Konda & Tsitsik­
lis, 2000; Baxter & Bartlett, 2000). This avoids the oscillation problem, but the
resulting algorithms are slow and only converge to local optima.

We pursue an alternative approach that formulates the function approximation
problem as a global supervised learning problem. This approach, pioneered by
Boyan and Moore in their GROWSUPPORT (1995) and ROUT (1996) algorithms,
separates the reinforcement learning problem into two subproblems: the exploration
problem (finding a good partial value function) and the representation problem (rep­
resenting and generalizing that value function). These algorithms alternate between
two phases. During the exploration phase, a support set of points is constructed
whose optimal values are known within some tolerance. In the function fitting
phase, a function approximator V is fit to the support set.

In this paper, we describe two ways of improving upon GROWSUPPORT and ROUT.
First, we replace the support set with the set of states that lie along the best
paths found during exploration. Second, we employ a combined error function that
includes terms for the supervised error, the Bellman error, and the advantage error
(Baird, 1995) into the function fitting process. The resulting BFBP (Batch Fit to
Best Paths) method gives significantly better performance on resource-constrained
scheduling problems as well as on the mountain car toy benchmark problem.

2 GrowSupport, ROUT, and BFBP

Consider a deterministic, episodic MDP. Let s' == a(s) denote the state s' that
results from performing a in s and r(a, s) denote the one-step reward. Both GROW­
SUPPORT and ROUT build a support set S == {(Si' V(Si))} of states whose optimal
values V (s) are known with reasonable accuracy. Both algorithms initialize S with
a set of terminal states (with V(s) == 0). In each iteration, a function approximator
V is fit to S to minimize :Ei[V(Si) - V(Si)]2. Then, an exploration process attempts
to identify new points to include in S.

In GROWSUPPORT, a sample of points X is initially drawn from the state space.
In each iteration, after fitting V, GROWSUPPORT computes a new estimate V(s)
for each state sEX according to V(s) == maxa r(s, a) + V(a(s)), where V(a(s))
is computed by executing the greedy policy with respect to V starting in a(s). If
V(a(s)) is within c of V(a(s)), for all actions a, then (s, V(s)) is added to S.

ROUT employs a different procedure suitable for stochastic MDPs. Let P(s'ls, a)
be the probability that action a in state s results in state s' and R(s'ls, a) be
the expected one-step reward. During the exploration phase, ROUT generates a
trajectory from the start state to a terminal state and then searches for a state s
along that trajectory such that (i) V(s) is not a good approximation to the backed-
up value V(s) == maxa :Est P(s'ls, a)[R(s'ls, a) + V(s')], and (ii) for every state s
along a set of rollout trajectories starting at s', V(s) is within c of the backed-up
value maxa :Est P(s'ls, a)[R(s'ls, a) +V(s')]. If such a state is found, then (s, V(s))
is added to S.

Both GROWSUPPORT and ROUT rely on the function approximator to generalize
well at the boundaries of the support set. A new state s can only be added to
S if V has generalized to all of s's successor states. H this occurs consistently,



then eventually the support set will expand to include all of the starting states of
the MDP, at which point a satisfactory policy has been found. However, if this
"boundary generalization" does not occur, then no new points will be added to S,
and both GROWSUPPORT and ROUT. terminate without a solution. Unfortunately,
most regression methods have high bias and variance near the boundaries of their
training data, so failures of boundary generalization are common.

These observations led us to develop the BFBP algorithm. In BFBP, the exploration
process maintains a data structure S that stores the best known path from the start
state to a terminal state and a "tree" of one-step departures from this best path
(Le., states that can be reached by executing an action in some state on the best
path). At each state Si E S, the data structure stores the action at executed in that
state (to reach the next state in the path), the one-step reward ri, and the estimated
value V(Si). S also stores each action a_ that causes a departure from the best path
along with the resulting state S_, reward r_ and estimated value V(s_). We will
denote by B the subset of S that constitutes the best path. The estimated values
V are computed as folloV1S. For states S'i E B, V(Si) is computed 'by summing the
immediate rewards rj for all steps j 2: i along B. For the one-step departure states
s_, V(s_) is computed from an exploration trial in which the greedy policy was
followed starting in state s_.

fuitially, S is empty, so a random trajectory is generated from the start state So to a
terminal state, and it becomes the initial best known path. fu subsequent iterations,
a state Si E B is chosen at random, and an action a' 1= at is chosen and executed to
produce state s' and reward r'. Then the greedy policy (with respect to the current
V) is executed until a terminal state is reached. The rewards along this new path
are summed to produce V(s'). If V(s') +r' > V(Si), then the best path is revised as
follows. The new best action in state Si becomes al with estimated value V(s') +r'.
This improved value is then propagated backwards to update the V estimates for
all ancestor states in B. The old best action at in state Si becomes an inferior
action a_ with result state s_. Finally all descendants of s_ along the old best
path are deleted. This method of investigating one-step departures from the best
path is inspired by Harvey and Ginsberg's (1995) limited discrepancy search (LDS)
algorithm. In each exploration phase, K one-step departure paths are explored.

After the exploration phase, the value function approximation V is recomputed with
the goal of minimizing a combined error function:

J(V) == As L (V(s) - V(S))2 + Ab L (V(s) - [r(s, a*) + V(a*(s))])2 +
sES sEB

Aa L L ([r(s,a-) +V(a-(s))] - [r(s,a*) +V(a*(s))]):.

The three terms of this objective function are referred to as the supervised, Bellman,
and advantage terms. Their relative importance is controlled by the coefficients As,
Ab' and Au. The supervised term is the usual squared error between the V(s) values
stored in S and the fitted values V(s). The Bellman term is the squared error
between the fitted value and the backed-up value of the next state on the best path.
And the advantage term penalizes any case where the backed-up value of an inferior
action a_ is larger than the backed-up value of the best action a*. The notation
(u)+ == u if u 2: 0 and 0 otherwise.

TheoreIll 1 Let M be a deterministic MDP such that (aJ there are only a finite
number of starting states, (bJ there are only· a finite set of actions executable in
each state, and (c) all policies reach a terminal state. Then BFBP applied to M
converges.



Proof: The LDS exploration process is monotonic, since the data structure S is
only updated if a new best path is found. The conditions of the theorem imply
that there are only a finite number of possible paths that· can be explored from the
starting states to the terminal states. Hence, the data structure S will eventually
converge. Consequently, the value function V fit to S will also converge. Q.E.D.

The theorem requires that the MDP contain no cycles. There are cycles in our job­
shop scheduling problems, but we eliminate them by remembering all states visited
along the current trajectory and barring any action that would return to a previously
visited state. Note also that the theorem applies to MDPs with continuous state
spaces provided the action space and the start states are finite.

Unfortunately, BFBP does not necessarily converge to an optimal policy. This is
because LDS exploration can get stuck in a local optimum such that all one step
departures using the V-greedy policy produce trajectories that do not improve over
the current best path. Hence, although BFBP resembles policy iteration, it does not
have the same optimality guarantees,. because policy iteration evaluates the current
greedy policy in all states in the state space.

Theoretically, we could prove convergence to the optimal policy under modified con­
ditions. If we replace LDS exploration with €-greedy exploration, then exploration
will converge to the optimal paths with probability 1. When trained on those paths,
if the function approximator fits a sufficiently accurate V, then BFBS will converge
optimally. hI our experiments, however, we have found that €-greedy gives no im­
provement over LDS, whereas LDS exploration provides more complete coverage of
one-step departures from the current best path, and these are used in J(V).

3 Experimental Evaluation

We have studied five domains: Grid World and Puddle World (Boyan & Moore,
1995), Mountain Car (Sutton, 1996), and resource-constrained scheduling problems
ART-1 and ART-2 (Zhang & Dietterich, 1995). For the first three domains, fol­
lowing Boyan and Moore, we compare BFBP with GROWSUPPORT. For the final
domain, it is difficult to draw a sample of states X from the state space to initialize
GROWSUPPORT. Hence, we compare against ROUT instead. As mentioned above,
we detected and removed cycles from the scheduling domain (since ROUT requires
this). We retained the cycles in the first three problems. On mountain car, we also
applied SARSA(A) with the CMAC function approximator developed by Sutton
(1996).

We experimented with two function approximators: regression trees (RT) and
locally-weighted linear regression (LWLR). Our regression trees employ linear sep­
arating planes at the internal nodes and linear surfaces at the leaf nodes. The trees
are grown top-down in the usual fashion. To determine the splitting plane at a
node, we choose a state Si at random from S, choose one of its inferior children S_,

and construct the plane that is the perpendicular bisector of these two points. The
splitting plane is evaluated by fitting the resulting child nodes to the data (as leaf
nodes) and computing the value of J (V). A number C of parent-child pairs (Si' S - )

are generated and evaluated, and the best one is retained to be the splitting plane.
This process is then repeated recursively until a node contains fewer than M data
points~ The linear surfaces at the leaves are trained by gradient descent to minimize
J(V). The gradient descent terminates after 100 steps or earlier if J becomes very
small. In our experiments, we tried all combinations of the following parameters
and report the best results: (a) 11 learning rates (from 0.00001 to 0.1), (b) M == 1,



Table 1: Comparison of results on three toy domains.

Problem Domain Algorithms Optimal Policyfj Best Policy Length
Grid World GROWSUPPORT Yes 39

BFBP Yes 39
Puddle World G ROWSUPPORT Yes 39

BFBP Yes 39
Mountain Car SARSA(A) No 103

GROWSUPPORT No 93
BFBP Yes 88

Table 2: Results of ROUT and BFBP on scheduling problem ART-I-TRNOO

I Performance I ROUT (RT) I ROUT (LWLR) I BFBP (RT)
I Best policy explored I 1.75 I 1.55 I 1.50
I Best final learned policy I 1.8625 I 1.8125 I 1.55

10, 20, 50, 100, 1000, (c) C == 5, 10, 20, 50, 100, and (d) K == 50, 100, 150, 200.

For locally-weighted linear regression, we replicated the methods of B'oyan and
Moore. To compute V(s), a linear regression is performed using all points Si E S
weighted by their distance to S according to the kernel exp -(Ilsi - sII 2 /a2 ). We
experimented with all combinations of the following parameters and report the best
results: (a) 29 values (from 0.01 to 1000.0) of the tolerance E that controls the
addition of new points to S, and (b) 39 values (from 0.01 to 1000.0) for a.

We execute ROUT and GROWSUPPORT to termination. We execute BFBP for 100
iterations, but it converges much earlier: 36 iterations for the grid world, 3 for
puddle world, 10 for mountain car, and 5 for the job-shop scheduling problems.

Table 1 compares the results of the algorithms on the toy domains with parameters
for each method tuned to give the best results and with As == 1 and Ab == Aa == o.
In all cases, BFBP matches or beats the other methods. In Mountain Car, in
particular, we were pleased that BFBP discovered the optimal policy very quickly.
Table 2 compares the results of ROUT and BFBP on job-shop scheduling problem
TRNOO from problem set ART-1 (again with As == 1 and Ab == Aa == 0). For ROUT,
results with both LWLR and RT are shown. LWLR gives better results for ROUT.
We conjecture that this is because ROUT needs a value function approximator that
is conservative near the boundary of the training data, whereas BFBP does not.
We report both the best policy found during the iterations and the final policy at
convergence. Figure 1 plots the r,esults for ROUT (LWLR) against BFBP (RT) for
eight additional scheduling problems from ART-I. The figure of merit is RDF, which
is a normalized measure of schedule length (small values are preferred). BFBP's
learned policy out-performs ROUT's in every case.

The experiments above all employed only the supervised term in the error function
J. These experiments demonstrate that LDS exploration gives better training sets
than the support set methods of GROWSUPPORT and ROUT. Now we turn to the
question of whether the Bellman and advantage terms can provide improved results.
For the grid world and puddle world tasks, the supervised term already gives optimal
performance, so we focus on the mountain car and job-shop scheduling problems.

Table 3 summarizes the results for BFBP on the mountain car problem. All pa­
rameter settings, except for the last, succeed in finding the optimal policy. To get
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Figure 1: Performance of Rout vs. BFBP over 8 job shop scheduling problems

Table 3: Fraction of parameter settings that give optimal performance for BFBP on the
mountain car problem

.As .Ab .Aa # settings As Ab Aa # settings
0.0 0.0 1.0 2/1311 0.0 1.0 0.0 1/1297
1.0 0.0 0.0 52/1280 1.0 0.0 10.0 184/1291
1.0 10.0 0.0 163/1295 1.0 0.0 100.0 133/1286
1.0 100.0 0.0 4/939 1.0 1000.0 0.0 0/1299

a sense of the robustness of the method, we also report the fraction of parameter
settings that gave the optimal policy. The number of parameter settings tested (the
denominator) should be the same for all combinations of A values. Nonetheless,
for reasons unrelated to the parameter settings, some combinations failed to be
executed by our distributed process scheduler. The best settings combine As == 1
with either Ab == 10 or Aa == 10. However, if we employ either the Bellman or the
advantage term alone, the results are poor. Hence, it appears that the supervised
term is very important for good performance, but that the advantage and Bellman
terms can improve performance substantially .and reduce the sensitivity of BFBP
to the settings of the other parameters.

Table 4 shows the performance of BFBP on ART-I-TRNOO. The best performance
(at convergence) is obtained with As == Aa == 1 and Ab == O. As with mountain car,
these experiments show that the supervised term is the most important, but that
it gives even better results when combined with the advantage term.

All of the above experiments compare performance on single problems. We also
tested the ability of BFBP to generalize to similar problems following the formu­
lation of (Zhang & Dietterich, 1995). Figure 2 compares the performance of neu­
ral networks and regression trees as function approximators for BFBP. Both were
trained on job shop scheduling problem set ART-2. Twenty of the problems in
ART-2 were used for training, 20 for cross-validation, and 50 for testing. Eleven
different values for As, Ab' Aa and eight different values for the learning rate were
tried, with the best values selected according to the cross-validation set. Figure 2
shows that BFBP is significantly better than the baseline performance (with RDF



Table 4: Performance ofBFBP on ART-1-TENOO for different settings of the .A parameters.
The ('perform;' column gives the best RDF in any iteratIon and the RDF at convergence.

.A8 .Ab .Aa perform. .A8 .Ab .Aa perform. .A8 .Ab .Aa perform.
0 0 1 1.50/1.75 0 1 0 1.50/1.775 1 0 0 1.50/1.55
0 1 1 1.50/1.775 0 1 10 1.50/1.825 0 1 100 1.50/1.65
0 10 1 1.50/1.775 0 100 1 1.50/1.738 1 1 a 1.50/1.563
1 0 1 1.50/1.488 1 0 10 1.463/1.525 1 0 100 1.50/1.588
1 1 1 1.525/1.55 1 1 10 1.50/1.588 1 1 100 1.50/1.675
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Figure 2: BFBP on ART-2 using neural nets and regression trees. "RDF" is a hand-coded
heuristic, "TDL" is Zhang's TD(.A) neural network.

as a search heuristic) and that its performance is comparable to TD(A) with neu­
ral networks (Zhang & Dietterich, 1995). Figure 3 shows that for ART-2, using
parent/inferior-child pair splits gives better results than using axis-parallel splits.

4 Conclusions

This paper has shown that the exploration strategies underlying GROWSUPPORT
and ROUT can be improved by simply remembering and training on the best paths
found between start and terminal states. Furthermore, the paper proved that the
BFBP method converges for arbitrary function approximators, which is a result
that has not yet been demonstrated for online methods such as SARSA(A). In
addition, we have shown that the performance of our BFBP algorithm can be further
improved (and made more robust) by incorporating a penalty for violations of the
Bellman equation or a penalty for preferring inferior actions (an advantage error).

Taken together, these results show that incremental-batch value function approxi­
mation can be a reliable, convergent method for solving deterministic reinforcement
learning problems. The key to the success of the method is the ability to separate
the exploration process from the function approximation process and to make the
exploration process convergent. This insight should also be applicable to stochastic
episodic MDPs.



1.9 ,-------.-----,------,----..,-------,-----,
axis-parallel ....*...

parent/inferior-child .. ··11 •••.

30252015

LDS iteration

10

1.3 L-__--l- -'---__---'- -L-__---L.__----I

o

Figure 3: Axis parallel splits versus parent/inferior-child pair splits on ART-2
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