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Abstract

In the ‘missing data’ approach to improving the robustness of automatic
speech recognition to added noise, an initial process identifies spectral-
temporal regions which are dominated by the speech source. The
remaining regions are considered to be ‘missing’. In this paper we
develop a connectionist approach to the problem of adapting speech
recognition to the missing data case, using Recurrent Neural Networks.
In contrast to methods based on Hidden Markov Models, RNNs allow
us to make use of long-term time constraints and to make the problems
of classification with incomplete data and imputing missing values
interact. We report encouraging results on an isolated digit recognition
task.

1. Introduction

Automatic Speech Recognition systems perform reasonably well in controlled and
matched training and recognition conditions. However, performance deteriorates when
there is a mismatch between training and testing conditions, caused for instance by
additive noise (Lippmann, 1997). Conventional techniques for improving recognition
robustness (reviewed by Furui 1997) seek to eliminate or reduce the mismatch, for
instance by enhancement of the noisy speech, by adapting statistical models for speech
units to the noise condition or simply by training in different noise conditions.

Missing data techniques provide an alternative solution for speech corrupted by additive
noise which make minimal assumptions about the nature of the noise. They are based on
identifying uncorrupted, reliable regions in the frequency domain and adapting
recognition algorithms so that classification is based on these regions.

Present missing data techniques developed at Sheffield (Barker et al. 2000a, Barker et al.
2000b, Cooke et al., 2001) and elsewhere (Drygaglo et al., 1998, Raj et al., 2000) adapt the
prevailing technique for ASR based on Continuous Density Hidden Markov Models.
CDHMMs are generative models which do not give direct estimates of posterior



probabilities of the classes given the acoustics. Neural Networks, unlike HMMs, are
discriminative models which do give direct estimates of posterior probabilities and have
been used with success in hybrid ANN/HMM speech recognition systems (Bourlard et al.,
1998).

In this paper, we adapt a recurrent neural network architecture introduced by (Gingras &
Bengio, 1998) for robust ASR with missing data.

2. Missing data techniques for Robust ASR

2.1 Missing data masks

Speech recognition with missing data is based on the assumption that some regions in
time/frequency remain uncorrupted for speech with added noise. See (Cooke et al., 2001)
for arguments to support this assumption. Initial processes, based on local signal-to-noise
estimates, on auditory grouping cues, or a combination (Barker et al., 2001) define a
binary ‘missing data mask’: ones in the mask indicate reliable (or ‘present’) features and
zeros indicate unreliable (or ‘missing’) features.

2.2 Classification with missing data

Techniques for classification with incomplete data can be divided into imputation and
marginalisation. Imputation is a technique in which missing features are replaced by
estimated values to allow the recognition process proceed in normal way. If the missing
values are replaced by either zeros, random values or their means based on training data,
the approach is called unconditional imputation. On the other hand in conditional
imputation conditional statistics are used to estimate the missing values given the present
values. In the marginalisation approach missing values are ignored (by integrating over
their possible ranges) and recognition is performed with the reduced data vector which is
considered reliable. For the multivariate mixture Gaussian distributions used in
CDHMMs, marginalisation and conditional imputation can be formulated analytically
(Cooke et al., 2001). For missing data ASR further improvements in both techniques
follow from using the knowledge that for spectral energy features the unreliable data is
bounded between zero and the energy in speech+noise mixture (Vizinho et al., 1999),
(Josifovski et al., 1999). These techniques are referred to as bounded marginalisation and
bounded imputation. Coupled with a ‘softening’ of the reliable/unreliable decision,
missing data techniques produce good results on a standard connected-digits-in-noise
recognition task: performance using models trained on clean data is comparable, and in
severe noise superior, to conventional systems trained across different noise conditions
(Barker et al., 2001).

2.3 Why recurrent neural nets for missing data robust ASR?

Several neural net architectures have been proposed to deal with the missing data problem
in general (Ahmed & Tresp, 1993), (Ghahramani & Jordan, 1994). The problem in using
neural networks with missing data is to compute the output of a node/unit when some of
its input values are unavailable.

For marginalisation, this involves finding a way of integrating over the range of the
missing values. A robust ASR system to deal with missing data using neural networks has
recently been proposed by (Morris et al., 2000). This is basically a radial basis function
neural network with the hidden units associated with a diagonal covariance gaussian. The
marginal over the missing values can be computed in this case and hence the resulting
system is equivalent to the HMM based missing data speech recognition system using
marginalisation. Reported performance is also comparable to that of the HMM based



speech recognition system.

In this paper missing data is dealt with by imputation. We use recurrent neural networks to
estimate missing values in the input vector. RNNs have the potential to capture long-term
contextual effects over time, and hence to use temporal context to compensate for missing
data which CDHMM based missing data techniques do not do. The only contextual
information available in CDHMM decoding come from the addition of temporal
derivatives to the feature vector. RNNs also allow a single net to perform both imputation
and classification, with the potential of combining these processes to mutual benefit.

The RNN architecture proposed by Gingras et al. (1998) is based on a fully-connected
feedforward network with input, hidden and output layers using hyperbolic tangent
activation functions. The output layer has one unit for each class and the network is
trained with the correct classification as target. Recurrent links are added to the
feedforward net with unit delay from output to the hidden units as in Jordan networks
(Jordan, 1988). There are also recurrent links with unit delay from hidden units to missing
input units to impute missing features. In addition, there are self delayed terms with a
fixed weight for each unit which basically serve to stabilise RNN behaviour over time and
help in imputation as well. Gingras et al. used this RNN both for a pattern classification
task with static data (one input vector for each example) and sequential data (a sequence
of input values for each example).

Our aim is to adapt this architecture for robust ASR with missing data. Some preliminary
static classification experiments were performed on vowel spectra (individual spectral
slices excised from the TIMIT database). RNN performance on this task with missing data
was better than standard MLP and gaussian classifiers. In the next section we show how
the net can be adapted for dynamic classification of the spectral sequences constituting
words.

3. RNN architecture for robust ASR with missing data

Figure 1 illustrates our modified version of the Gingras and Bengio architecture. Instead of
taking feedback from the output to the hidden layer we have chosen a fully connected or
Elman RNN (Elman, 1990) where there are full recurrent links from the past hidden layer
to the present hidden layer (figure 1). We have observed that these links produce faster
convergence, in agreement with (Pedersen, 1997). The number of input units depends on
the size of feature vector, i.e. the number of spectral channels. The number of hidden units
is determined by experimentation. There is one output unit for each pattern class. In our
case the classes are taken to be whole words, so in the isolated digit recognition
experiments we report, there are eleven output units, for ‘1’ - ‘9’, ‘zero’ and ‘oh’.

In training, missing inputs are initialised with their unconditional means. The RNN is then
allowed to impute missing values for the next frame through the recurrent links, after a
feedforward pass.

Where is the missing feature at time t, is the learning rate, indicates
recurrent links from a hidden unit to the missing input and is the activation of
hidden unit j at time t-1.

The average of the RNN output over all the frames of an example is taken after these
frames have gone through a forward pass. The sum squared error between the correct
targets and the RNN output for each frame is back-propagated through time and RNN
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weights are updated until a stopping criterion is reached.

The recognition phase consists of a forward pass to produce RNN output for unseen data
and imputation of missing features at each time step. The highest value in the averaged
output vector is taken as the correct class.

4. Isolated word recognition experiments

Continuous pattern classification experiments were performed using data from 30 male
speakers in the isolated digits section of the TIDIGIT database (Leonard, 1984). There
were two examples per speaker of each of the 11 words (i.e. 1-9, zero, oh). 220 examples
were chosen from a subset of 10 speakers for training. Recognition was performed on 110
examples from the speakers not included in training. A validation set of 110 examples was
used for early stopping.

Features were extracted from hamming windowed speech with a window size of 25 msec
and 50% overlap. Two types of feature vectors used for the experiments were total
energies in the four frequency bands (115-629 Hz, 565-1370 Hz, 1262-2292 Hz and 2212-
3769 Hz) and 20 mel scaled FFT filter bank energies.

In the initial experiments we report, the missing data masks were formed by deleting

Figure 1: RNN architecture for robust ASR with missing data technique. Solid arrows
show full forward and recurrent connections between two layers. Shaded blocks in the
input layer indicate missing inputs which keep changing at every time step. Missing
inputs are fully connected (solid arrows) with the hidden layer with a unit delay in
addition to delayed self-connection (thin arrows) with a fixed weight.
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spectral energy features at random. This allows comparison with early results with HMM-
based missing data recognition (Cooke et al. 1996) and close experimental control. For
training 1/3rd of the training examples were clean, 1/3rd had 25% deletions and 1/3rd had
50% deletions. Recognition performance was evaluated with 0% to 80% missing features
with an increment of 10%.

5. Results

5.1 RNN performance as a classifier

An RNN with 20 inputs, 65 hidden and 11 output units was chosen for recognition and
imputation with 20 features per time frame. Its performance on various amounts of
missing features from 0% to 80%, shown in Figure 2 (the ‘RNN imputation’ curve), is
much better than the standard Elman RNN trained on clean speech only for classification
task and tested with the mean imputation. Use of the self delayed term in addition to the
recurrent links for imputation of missing features contributes positively in case of
sequential data. Results resemble those reported for HMMs in (Cooke et al. 1996). We
also show that results are superior to ‘last reliable imputation’ in which the imputed value
of a feature is the last reliable value for that feature.

5.2 RNN performance on pattern completion

Imputation, or pattern completion, performance was observed for an RNN trained with 4
features per frame of the speech and is shown in Figure 3. The RNN for this task had 4
input, 45 hidden and 11 output units. In figure 3(a), solid curves show the true values of
the feature in each frequency band at every frame for an example of a spoken ‘9’, the
horizontal lines are mean feature values, and the circles are the missing values imputed by
the RNN. Imputed values are encouragingly close to the true values. For this network,
classification error for recognition was 10.7% at 0% missing and 46.4% at 80% missing.

Figure 2: Comparison of RNN classification performance for different imputation
methods.
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The top curve in figure 3(b) shows the average pattern completion error when an RNN
with 20 input channels was trained on clean speech and during recognition missing
features were imputed from their unconditional means. The bottom curve is the average
pattern completion error with missing features imputed by the network. This demonstrates
the clear advantage of using the RNN for both imputation and classification.

6. Conclusion & future work

The experiments reported in section 5 constitute no more than a proof of concept. Our next
step will be to extend this recognition system for the connected digits recognition task
with missing data, following the Aurora standard for robust ASR (Pearce et al. 2000). This
will provide a direct comparison with HMM-based missing data recognition (Barker et al.,
2001). In this case we will need to introduce ‘silence’ as an additional recognition class,
and the training targets will be obtained by forced-alignment on clean speech with an
existing recogniser. We will use realistic missing data masks, rather than random
deletions. This is known to be a more demanding condition (Cooke et al. 1996).

When we are training using clean speech with added noise, another possibility is to use the
true values of the corrupted features as training targets for imputation. Use of actual
targets for missing values has been reported by (Seung, 1997) but the RNN architecture in
the latter work supports only pattern completion.
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