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Abstract

We derive an equivalence between AdaBoost and the dual of a convex
optimization problem, showing that the only difference between mini-
mizing the exponential loss used by AdaBoost and maximum likelihood
for exponential models is that the latter requires the model to be normal-
ized to form a conditional probability distribution over labels. In addi-
tion to establishing a simple and easily understood connection between
the two methods, this framework enables us to derive new regularization
procedures for boosting that directly correspond to penalized maximum
likelihood. Experiments on UCI datasets support our theoretical analy-
sis and give additional insight into the relationship between boosting and
logistic regression.

1 Introduction

Several recent papers in statistics and machine learning have been devoted to the relation-
ship between boosting and more standard statistical procedures such as logistic regression.
In spite of this activity, an easy-to-understand and clean connection between these differ-
ent techniques has not emerged. Friedman, Hastie and Tibshirani [7] note the similarity
between boosting and stepwise logistic regression procedures, and suggest a least-squares
alternative, but view the loss functions of the two problems as different, leaving the precise
relationship between boosting and maximum likelihood unresolved. Kivinen and Warmuth
[8] note that boosting is a form of “entropy projection,” and Lafferty [9] suggests the use of
Bregman distances to approximate the exponential loss. Mason et al. [10] consider boost-
ing algorithms as functional gradient descent and Duffy and Helmbold [5] study various
loss functions with respect to the PAC boosting property. More recently, Collins, Schapire
and Singer [2] show how different Bregman distances precisely account for boosting and
logistic regression, and use this framework to give the first convergence proof of AdaBoost.
However, in this work the two methods are viewed as minimizing different loss functions.
Moreover, the optimization problems are formulated in terms of a reference distribution
consisting of the zero vector, rather than the empirical distribution of the data, making the
interpretation of this use of Bregman distances problematic from a statistical point of view.

In this paper we present a very basic connection between boosting and maximum likelihood
for exponential models through a simple convex optimization problem. In this setting, it is



seen that the only difference between AdaBoost and maximum likelihood for exponential
models, in particular logistic regression, is that the latter requires the model to be nor-
malized to form a probability distribution. The two methods minimize the same extended
Kullback-Leibler divergence objective function subject to the same feature constraints. Us-
ing information geometry, we show that projecting the exponential loss model onto the
simplex of conditional probability distributions gives precisely the maximum likelihood
exponential model with the specified sufficient statistics. In many cases of practical inter-
est, the resulting models will be identical; in particular, as the number of features increases
to fit the training data the two methods will give the same classifiers. We note that through-
out the paper we view boosting as a procedure for minimizing the exponential loss, using
either parallel or sequential update algorithms as in [2], rather than as a forward stepwise
procedure as presented in [7] or [6].

Given the recent interest in these techniques, it is striking that this connection has gone un-
observed until now. However in general, there may be many ways of writing the constraints
for a convex optimization problem, and many different settings of the Lagrange multipli-
ers (or Kuhn-Tucker vectors) that represent identical solutions. The key to the connection
we present here lies in the use of a particular non-standard presentation of the constraints.
When viewed in this way, there is no need for special-purpose Bregman distances to give a
unified account of boosting and maximum likelihood, as we only make use of the standard
Kullback-Leibler divergence. But our analysis gives more than a formal framework for
understanding old algorithms; it also leads to new algorithms for regularizing AdaBoost,
which is required when the training data is noisy. In particular, we derive a regularization
procedure for AdaBoost that directly corresponds to penalized maximum likelihood using a
Gaussian prior. Experiments on UCI data support our theoretical analysis, demonstrate the
effectiveness of the new regularization method, and give further insight into the relationship
between boosting and maximum likelihood exponential models.

2 Notation

Let
�

and � be finite sets. We denote by � �����	� ��
 �
������� the set of non-
negative measures on

��
 � , and by ����� the set of conditional probability distributions,�	��������� ���! #"%$&�('*),+.-0/&��1%+ for each )2� � � . For �3��� , we will overload
the notation �('*),+.-0/ and �('*-&45)6/ ; the latter will be suggestive of a conditional probability
distribution, but in general it need not be normalized. Let 798�� �:
 �
��� , ;<�=1>+@?�?@?6+.� ,
be given functions, which we will refer to as features. These will correspond to the weak
learners in boosting, and to the sufficient statistics in an exponential model. Suppose that
we have data �A'B)DC.+E-%CF/G��HCJI,K with empirical distribution LMN'B)O+.-0/ and marginal LMP'*)D/ ; thus,
LMN'B)O+.-0/Q� K

H � HCRI,KTS '*)UCV+E)D/ S 'B-%C.+E-0/G? We assume, without loss of generality, that LMN'*)6/XWZY
for all ) . Throughout the paper, we assume (for notational convenience) that the training
data has the following property.

Consistent Data Assumption. For each )[� � with LMN'*)6/QW�Y , there is a unique -\�]�
for which LMN'*-&45)6/PW^Y . This - will be denoted L-T'*)6/ .

For most data sets of interest, each ) appears only once, so that the assumption trivially
holds. However, if ) appears more than once, we require that it is labeled consistently. We
make this assumption mainly to correspond with the conventions used to present boosting
algorithms; it is not essential to what follows.

Given 7 8 , we define the exponential model _#`D'*-&45)D/ , for a3�3�cb , by _�`d'B-�4e)D/f�Kg<hUikjRl�m nVoqprm h.sRt9u>v `%w xzyJ{zw  r|F} where ~FaO+V7c'*),+.-0/.�^� � b8 I,K a 8 7 8 '*),+.-0/ . The maximum likeli-

hood estimation problem is to determine parameters a that maximize the conditional log-



likelihood �%'FaD/�� � {zw  �LMN'B)O+.-0/������N_�`U'*-&45)6/ or minimize the log loss ���%' aU/ . The objective
function to be minimized in the multi-label boosting algorithm AdaBoost.M2 [2] is the ex-
ponential loss given by 	 M2 'FaD/]� � HCJI,K �Z �
I  
� ucv `%w x%yR{ � w  r|�� x%yR{ � w  
�*|B} ? As has been often
noted, the log loss and the exponential loss are qualitatively different. The exponential loss
grows exponentially with increasing negative “margin,” while the log loss grows linearly.

3 Correspondence Between AdaBoost and Maximum Likelihood

Since we are working with unnormalized models we make use of the extended conditional
Kullback-Leibler divergence or � -divergence, given by� '��,+E_z/ def� �

{ LMQ'*)D/ �  
� �,'B- 45)6/������ � '*-�45)D/_ '*- 4e)D/ ��� '*-&45)D/�� _ 'B-�4e)D/��

defined on � 
 � (possibly taking on the value � ). Note that if �,'��#45)6/�� � and_ '��#45)6/ � � then this becomes the more familiar KL divergence for probabilities. Let
features 7�8 and a fixed default distribution _�� � � be given. We define  ]'*LMP+V7T/N��� as '*LMN+k7T/ � �!�[� � � � { LMN'B)D/ �  � '*-�45)D/ 'F7 8 'B)O+.-0/"�$#�%&(' 7 8 45)*) / � Y0+ all ;d�>? (1)

Since LM �+ , this set is non-empty. Note that under the consistent data assumption, we
have that #,%&(' 7 45)-)X� 7c'B)O+VL-6'B)D/E/ . Consider now the following two convex optimization
problems, labeled . K and .0/ .

'1. K@/ minimize
� '��O+V_ � /

subject to �[�2 ]' LMN+k7T/ '1. / / minimize
� '3�O+V_ � /

subject to �]�4 '*LM +V7T/� � �
Thus, problem . / differs from . K only in that the solution is required to be normalized.
As we’ll show, the dual problem .65K corresponds to AdaBoost, and the dual problem .75/
corresponds to maximum likelihood for exponential models.

This presentation of the constraints is the key to making the correspondence between Ada-
Boost and maximum likelihood. Note that the constraint � { LMQ'*)D/ �Z �,'B- 4e)D/07c'B)O+.-0/&�#�%&0' 78) , which is the usual presentation of the constraints for maximum likelihood (as dual
to maximum entropy), doesn’t make sense for unnormalized models, since the two sides
of the equation may not be “on the same scale.” Note further that attempting to rescale by
dividing by the mass of � to get�

{ LMP'B)D/ �  �,'B-�4e)D/07c'B)O+E- /�Z 9�,'*-&45)6/ �:#�%&0' 78)
would yield nonlinear constraints.

We now derive the dual problems formally; the following section gives a precise statement
of the duality result. To derive the dual problem .75K , we calculate the Lagrangian as; K '3�O+kaU/ � �

{ LMN'*)6/ �  �,'B- 4e)D/ � �<��� �,'B-�4e)D/
_ � '*-&45)D/ � 1,�^~FaO+V7c'B)O+.-0/"�$#�%&0' 7<45)*) � � ?

For a�� � b , the connecting equation _#` def� arg =?>�@BA "�C ; K9'3�O+VaD/ is given by _�`D'*-�45)6/X�
_ � '*-&45)6/ uAv `%w x%yR{zw  @|��9D8EFHG x"I*{KJ } ? Thus, the dual function L M6K9' aU/N� ; K%'B_�`U+VaD/ is given byL M6K9'FaD/ � � �

{ LMP'*)6/ �  _ � '*-�45)D/ u v `%w xzyJ{zw  r|��9D8EFHG x"IB{KJ } ? (2)

The dual problem is to determine a8N �PO�QR�S=TOVU ` L MO' aU/ . To derive the dual for . / , we
simply add additional Lagrange multipliers W,{ for the constraints �  8�,'B-�4e)D/ �=1 .



3.1 Special cases

It is now straightforward to derive various boosting and logistic regression problems as
special cases of the above optimization problems.

Case 1: AdaBoost.M2. Take _��A'B-�4e)D/ � 1 . Then the dual problem =TO U `�L M K 'FaD/ is equiva-
lent to computing a*N�� OVQ!� =?><@ ` � C �  
I  
� uAv `zw x%yR{ � w  r|�� x%yR{ � w  
�*| which is the optimization
problem of AdaBoost.M2.

Case 2: Binary AdaBoost. In addition to the assumptions for the previous case, now as-
sume that - �2� �&1%+
� 1%� , and take 7 8 'B)O+E- /�� K/ -N7 8 'B)D/ . Then the dual problem is given by
a N � O�QR� =7>�@ ` � C u �6 
� v `%w x%yR{ �B|B} which is the optimization problem of binary AdaBoost.

Case 3: Maximum Likelihood for Exponential Models. In this case we take the same setup
as for AdaBoost.M2 but add the additional normalization constraints: �  8�,'B-�4e) C /��
1%+ � � 1>+@?@?�?T+�� ? If these constraints are satisfied, then the other constraints take the
form � { LMN'*)6/ �
 � '*-&45)6/.7 8 'B)O+.-0/ � � {zw  LMN'B)O+.-0/E7 8 '*),+.-0/ and the connecting

equation becomes _ ` '*-&45)6/ � K� p _K�>'B-�4e)D/ uAv `zw x%yR{%w  r|B} were � { is the normalizing term

� { � �Z c_ �>'*-�4 )D/ u>v `%w xzyJ{zw  r|F} , which corresponds to setting the Lagrange multiplier W {
to the appropriate value. In this case, after a simple calculation the dual problem is seen
to be L M / ' aU/<� � { LMQ'*)O+E-0/��<��� _�`D'B-�4e)D/ which corresponds to maximum likelihood for a
conditional exponential model with sufficient statistics 798>'*)O+E-0/ .
Case 4: Logistic Regression. Returning to the case of binary AdaBoost, we see that when
we add normalization constraints as above, the model is equivalent to binary logistic regres-
sion, since _�`D'e1 4e)D/&� KK � i�� jRl�m nEo p sJt ? We note that it is not necessary to scale the features
by a constant factor here, as in [7]; the correspondence between logistic regression and
boosting is direct.

3.2 Duality

Let � K and � / be defined as the following exponential families:

� K 'F_K�%+k7T/ � �#_ �[� �&_ '*-&45)6/ � _K�A'*-&45)6/ u v `%w x%yR{zw  @|�� x%yR{%w
	 yR{ |B|B} +Ua]�[� b �
� /%'F_K�%+k7T/ � �#_ � � �&_ '*-&45)6/�� _K�A'*-&45)D/ u v `%w xzyJ{zw  r|F} +Ua]�[� b �A?

Thus ��K is unnormalized while � / is normalized. We now define the boosting solution_ Nboost and maximum likelihood solution _ Nml as

_ Nboost � O�QR� =7>�@�
#" ���T� { LMN'*)6/d�
 c_ '*-&45)D/ _ Nml �:OVQ!�S=TO U�
#" ���O� { LMP'*)D/B�<��� _ '��-&45)6/
where � denotes the closure of the set � � � . The following theorem corresponds to
Proposition 4 of [3] for the usual KL divergence; in [4] the duality theorem is proved for
a general class of Bregman distances, including the extended KL divergence as a special
case. Note that we do not work with divergences such as

� '��Y0+V_z/ as in [2], but rather� '*LMN+E_z/ , which is more natural and interpretable from a statistical point-of-view.

Theorem. Suppose that
� ' LMN+V_ � /�� � . Then _ Nboost and _ Nml exist, are unique, and satisfy

_ Nboost � OVQ!� =?><@A "�� � '3�O+V_ � / � OVQ!�S=7>�@� " � �
� '*LMN+E_z/

_ Nml � OVQ!� =?><@A "����! � '3�O+V_K��/ � OVQ!�S=7>�@� " � �
� '*LMN+#" /6?

Moreover, _ Nml is computed in terms of _ Nboost as _ Nml �:OVQ!� =?>�@ & "����! � '��O+V_ Nboost / .
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Figure 1: Geometric view of the duality theorem. Minimizing the exponential loss finds the member
of ��� that intersects with the feasible set of measures satisfying the moment constraints (left). When
we impose the additional constraint that each conditional distribution �	��

������� must be normalized,
we introduce a Lagrange multiplier for each training example � , giving a higher-dimensional family
��� � . By the duality theorem, projecting the exponential loss solution onto the intersection of the
feasible set with the simplex gives the maximum likelihood solution.

This result has a simple geometric interpretation. The unnormalized exponential family
��K intersects the feasible set of measures  satisfying the constraints (1) at a single point.
The algorithms presented in [2] determine this point, which is the exponential loss solution_ Nboost �:OVQ!�S=?><@�� " ��� � '*LM +E_z/ (see Figure 1, left).

On the other hand, maximum conditional likelihood estimation for an exponential model
with the same features is equivalent to the problem _VNml � O�QR�S=?>�@ � " ��� � � ' LM +V_z/ where ��� K
is the exponential family with additional Lagrange multipliers, one for each normalization
constraint. The feasible set for this problem is  �� � . Since  �� ���  , by the Pythagorean
equality we have that _ Nml � O�QR� =7>�@ A "����! � '3�O+V_ Nboost / (see Figure 1, right).

4 Regularization

Minimizing the exponential loss or the log loss on real data often fails to produce finite
parameters. Specifically, this happens when for some feature 7 8

7 8 '*),+.-0/"��7 8 '*),+GL-�'*)6/./��^Y for all - and ) with LMP'B)D/PW�Y (3)

or 7 8 '*),+.-0/"��7 8 '*),+GL-�'*)6/./��^Y for all - and ) with LMP'B)D/PW�Y0?
This is especially harmful since often the features for which (3) holds are the most impor-
tant for the purpose of discrimination. Of course, even when (3) does not hold, models
trained by maximum likelihood or the exponential loss can overfit the training data. A
standard regularization technique in the case of maximum likelihood employs parameter
priors in a Bayesian framework. See [11] for non-Bayesian alternatives in the context of
boosting.

In terms of convex duality, parameter priors for the dual problem correspond to “poten-
tials” on the constraint values in the primal problem. The case of a Gaussian prior on a ,
for example, corresponds to a quadratic potential on the constraint values in the primal
problem.



We now consider primal problems over '3�O+���/ where �^�^� and �\��� b is a parameter
vector that relaxes the original constraints. Define  '*LMN+k7D+��@/N�^� as

 ]' LM +k7D+��@/ �
� �[� � � � { LMQ'*)D/ �  � '*-&45)6/�'F7�8>'B)O+.-0/"�$#�%&0' 7�8 45)*) / ���V8�� (4)

and consider the primal problem . Kkw reg given by

' .cKGw reg / minimize
� '��,+E_ � / ��� '��@/

subject to �[�4 '*LM +V7D+	�@/
where �f�%� b ��� is a convex function whose minimum is at Y .
To derive the dual problem, the Lagrangian is calculated as

; '��,+��9+kaU/&� ; '��,+VaD/S�
� '��@/
and the dual function is M Kkw reg 'FaD/ � M K 'FaD/(��� 5z'FaD/ where � 5%'FaD/ is the convex conjugate
of � . For a quadratic penalty � '��@/ � � 8 K/�
 /8 � /8 , we have � 5%'FaD/X� � � 8 K/�
 � /8 a /8 and
the dual function becomes

M6KGw reg ' aU/ � � �
{ LMN'B)D/ �  _ � '*-&45)6/ u v `%w x%yR{%w  r|�� x%yR{%w
	 yR{ |B} � �

8
a /8� 
 /8 ? (5)

A sequential update rule for (5) incurs the small additional cost of solving a nonlinear
equation by Newton-Raphson every iteration. See [1] for a discussion of this technique in
the context of exponential models in statistical language modeling.

5 Experiments

We performed experiments on some of the UC Irvine datasets in order to investigate the
relationship between boosting and maximum likelihood empirically. The weak learner was
the decision stump FindAttrTest as described in [6], and the training set consisted of
a randomly chosen 90% of the data. Table 1 shows experiments with regularized boosting.
Two boosting models are compared. The first model _zK was trained for 10 features gener-
ated by FindAttrTest, excluding features satisfying condition (3). Training was carried
out using the parallel update method described in [2]. The second model, _ / , was trained
using the exponential loss with quadratic regularization. The performance was measured
using the conditional log-likelihood of the (normalized) models over the training and test
set, denoted � train and � test, as well as using the test error rate � test. The table entries were
averaged by 10-fold cross validation.

For the weak learner FindAttrTest, only the Iris dataset produced features that satisfy
(3). On average, 4 out of the 10 features were removed. As the flexibility of the weak
learner is increased, (3) is expected to hold more often. On this dataset regularization
improves both the test set log-likelihood and error rate considerably. In datasets where_�K shows significant overfitting, regularization improves both the log-likelihood measure
and the error rate. In cases of little overfitting (according to the log-likelihood measure),
regularization only improves the test set log-likelihood at the expense of the training set
log-likelihood, however without affecting test set error.

Next we performed a set of experiments to test how much _�Nboost differs from _ Nml , where
the boosting model is normalized (after training) to form a conditional probability distribu-
tion. For different experiments, FindAttrTest generated a different number of features
(10–100), and the training set was selected randomly. The top row in Figure 2 shows for
the Sonar dataset the relationship between � train 'F_ Nml / and � train 'F_ Nboost / as well as between� train 'F_ Nml / and

�
train 'B_ Nml +V_ Nboost / . As the number of features increases so that the training



Unregularized Regularized
Data � train 'F_�K�/ � test 'B_#K@/ � test 'F_�K�/ � train 'B_ / / � test 'F_ / / � test 'B_ / /
Promoters -0.29 -0.60 0.28 -0.32 -0.50 0.26
Iris -0.29 -1.16 0.21 -0.10 -0.20 0.09
Sonar -0.22 -0.58 0.25 -0.26 -0.48 0.19
Glass -0.82 -0.90 0.36 -0.84 -0.90 0.36
Ionosphere -0.18 -0.36 0.13 -0.21 -0.28 0.10
Hepatitis -0.28 -0.42 0.19 -0.28 -0.39 0.19
Breast -0.12 -0.14 0.04 -0.12 -0.14 0.04
Pima -0.48 -0.53 0.26 -0.48 -0.52 0.25

Table 1: Comparison of unregularized to regularized boosting. For both the regularized and un-
regularized cases, the first column shows training log-likelihood, the second column shows test log-
likelihood, and the third column shows test error rate. Regularization reduces error rate in some
cases while it consistently improves the test set log-likelihood measure on all datasets. All entries
were averaged using 10-fold cross validation.

data is more closely fit ( � train 'B_ ml /7�U� Y ), the boosting and maximum likelihood models
become more similar, as measured by the KL divergence. This result does not hold when
the model is unidentifiable and the two models diverge in arbitrary directions.

The bottom row in Figure 2 shows the relationship between the test set log-likelihoods,� test 'B_ Nml / and � test 'F_ Nboost / , together with the test set error rates � test 'B_ Nml / and � test 'F_ Nboost / . In
these figures the testing set was chosen to be 50% of the total data. In order to indicate the
number of points at each error rate, each circle was shifted by a small random value to avoid
points falling on top of each other. While the plots in the bottom row of Figure 2 indicate
that � train 'F_ Nml / W � train 'B_ Nboost / , as expected, on the test data the linear trend is reversed,
so that � test 'B_ Nml /�� � test 'F_ Nboost / . Identical experiments on Hepatitis, Glass and Promoters
resulted in similar results and are omitted due to lack of space.

The duality result suggests a possible explanation for the higher performance of boosting
with respect to � test. The boosting model is less constrained due to the lack of normalization
constraints, and therefore has a smaller � -divergence to the uniform model. This may be
interpreted as a higher extended entropy, or less concentrated conditional model.

However, as �%'F_ Nml /��D� Y , the two models come to agree (up to identifiability). It is easy to
show that for any exponential model _#`\� � / + � train 'B_ Nml +V_�` / � �%'B_ Nml /"� �%'B_�`>/r? By taking_�`(��_ Nboost it is seen that as the difference between �%'F_VNml / and �%'B_ Nboost / gets smaller, the
divergence between the two models also gets smaller. The empirical results are consistent
with the theoretical analysis. As the number of features is increased so that the training
data is fit more closely, the model matches the empirical distribution LM and the normalizing
term � ` 'B)D/ becomes a constant. In this case, normalizing the boosting model " Nboost does
not violate the constraints, and results in the maximum likelihood model.
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Figure 2: Comparison of AdaBoost and maximum likelihood for Sonar dataset. The top row com-
pares � train 

���ml � to � train 

���boost � (left) and � train 

���ml � to � train 

���ml � ���boost � (right). The bottom row
shows the relationship between � test 

���ml � and � test 

���boost � (left) and  test 

���ml � and  test 

���boost � (right).
The experimental results for other UCI datasets were very similar.
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