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In this paper, we extend the Rao-Blackwellised particle filtering 
method to more complex hybrid models consisting of Gaussian la­
tent variables and discrete observations. This is accomplished by 
augmenting the models with artificial variables that enable us to 
apply Rao-Blackwellisation. Other improvements include the de­
sign of an optimal importance proposal distribution and being able 
to swap the sampling an selection steps to handle outliers. We focus 
on sequential binary classifiers that consist of linear combinations 
of basis functions , whose coefficients evolve according to a Gaussian 
smoothness prior. Our results show significant improvements. 

1 Introduction 

Sequential Monte Carlo (SMC) particle methods go back to the first publically 
available paper in the modern field of Monte Carlo simulation (Metropolis and 
Ulam 1949) ; see (Doucet, de Freitas and Gordon 2001) for a comprehensive review. 
SMC is often referred to as particle filtering (PF) in the context of computing 
filtering distributions for statistical inference and learning. It is known that the 
performance of PF often deteriorates in high-dimensional state spaces. In the past, 
we have shown that if a model admits partial analytical tractability, it is possible 
to combine PF with exact algorithms (Kalman filters, HMM filters , junction tree 
algorithm) to obtain efficient high dimensional filters (Doucet , de Freitas, Murphy 
and Russell 2000, Doucet, Godsill and Andrieu 2000). In particular, we exploited 
a marginalisation technique known as Rao-Blackwellisation (RB). 

Here, we attack a more complex model that does not admit immediate analytical 
tractability. This probabilistic model consists of Gaussian latent variables and bi­
nary observations. We show that by augmenting the model with artificial variables , 
it becomes possible to apply Rao-Blackwellisation and optimal sampling strategies. 
We focus on the problem of sequential binary classification (that is, when the data 
arrives one-at-a-time) using generic classifiers that consist of linear combinations 
of basis functions, whose coefficients evolve according to a Gaussian smoothness 



prior (Kitagawa and Gersch 1996). We have previously addressed this problem in 
the context of sequential fault detection in marine diesel engines (H0jen-S0rensen, 
de Freitas and Fog 2000). This application is of great importance as early detection 
of incipient faults can improve safety and efficiency, as well as, help to reduce down­
time and plant maintenance in many industrial and transportation environments. 

2 Model Specification and Estimation Objectives 

Let us consider the following binary classification model. Given at time t = 1,2, .. . 
an input Xt we observe Zt E {O, I} such that 

Pr( Zt = llxt ,.8t ) = CP(f(xl, .8t}), (1) 

where CP (u) = vk J::oo exp (_a2 /2) da is the cumulative function of the standard 
normal distribution. This is the so-called pro bit link. By convention, researchers 
tend to adopt a logistic (sigmoidal) link function 'P (u) = (1 + exp (_U)) -1 . How­
ever, from a Bayesian computational point of view, the probit link has many ad­
vantages and is equally valid. The unknown function is modeled as 

K 

!(Xt, .8t) = L .8t,k\[ldxt) = \[IT (Xt).8t , 
k=1 

where we have assumed that the basis functions \[I (Xt) £ (\[11 (Xt) , ... , \[I K (Xt)/ do 
not depend on unknown parameters; see (Andrieu, de Freitas and Doucet 1999) for 
the more general case . .8t £ (.8t,1,' .. ,.8t,K) T E ~K is a set of unknown time-varying 
regression coefficients. To complete the model , we assume that they satisfy 

.8t = At.8t-1 + BtVt, .80'" N (rna, Po) (2) 

where Vt i·~.:f N (0 , In.) and A and B control model correlations and smoothing 
(regularisation). Typically K is rather large, say 10 or 100, and the bases \[Ik (.) are 
multivariate splines, wavelets or radial basis functions (Holmes and Mallick 1998). 

2.1 Augmented Statistical Model 

We augment the probabilistic model artificially to obtain more efficient sampling 
algorithms, as will be detailed in the next section. In particular, we introduce the 
set of independent variables Yt , such that 

Yt =! (Xt,.8t) + nt, (3) 

h i.i.d. N (0 1) d d fi {I if Yt > 0, 
were nt '" "an e ne Zt = 0 otherwise. It is then easy to check 

that one has Pr (Zt = 11 Xt, .8t ) = CP (f (Xl, .8t)) . 

This data augmentation strategy was first introduced in econometrics by economics 
Nobel laureate Daniel McFadden (McFadden 1989). In the MCMC context, it has 
been used to design efficient samplers (Albert and Chib 1993). Here, we will show 
how to take advantage of it in an SMC setting. 

2.2 Estimation objectives 

Given, at time t , the observations Ol:t £ (Xl:t, Zl:t), any Bayesian inference is based 
on the posterior distribution1 P (d.8o:tl Ol:t)' We are, therefore, interested in es­
timating sequentially in time this distribution and some of its features , such as 

IFor any B, we use P (dBo,tl au) to denote the distribution and p (Bo,tl au) to denote 
the density, where P (dBo,tl au) = p (Bo,tl au) dBo,t. Also, Bo,t ~ {Bo, BI , ... , Bd . 



lE ( f (xt, ,Bt) I Ol:t) or the marginal predictive distribution at time t for new input 
data Xt+1, that is Pr (Zt+1 = 11 01:t, xHd. The posterior density satisfies a time 
recursion according to Bayes rule, but it does not admit an analytical expression 
and, consequently, we need to resort to numerical methods to approximate it. 

3 Sequential Bayesian Estimation via Particle Filtering 

A straightforward application of SMC methods to the model (1)-(2) would focus 
on sampling from the high-dimensional distribution P (d,Bo:t I 01:t) (H0jen-S0rensen 
et al. 2000). A substantially more efficient strategy is to exploit the augmentation 
of the model to sample only from the low-dimensional distribution P ( dY1:t I 01:t). 
The low-dimensional samples allow us then to compute the remaining estimates 
analytically, as shown in the following subsection. 

3.1 Augmentation and Rao-Blackwellisation 

Consider the extended model defined by equations (1)-(2)-(3). One has 

p(,Bo:tlo1:t) = J p( ,Bo:tl x 1:t,Y1:t)p(Y1:tl o1:t)dY1:t· 

Thus if we have a Monte Carlo approximation of P (dY1:t I ol:d of the form 

then P (,Bo:tl 01:t) can be approximated via 

N 

PN (,Bo:tl 01:t) = L w~i)p ( ,Bo:tl x1:t,yi:O ' 
i=l 

that is a mixture of Gaussians. From this approximation, one can estimate 
lE(,Btlxl:t,Yl:t) and lE(,Bt-Llxl:t,Yl:t). For example, an estimate of the predictive 
distribution is given by 

PrN(Zt+1 = Il ol:t,XH1) = J Pr( Zt+1 = lIYH1)PN(dYl:t+1 lol:t, xt+1) (4) 

N 
,, (i) ( (i) ) = ~ W t ][(0,+00) YHl , 
i=l 

where Y~21 ~ P ( dYHll Xl:t+1, Yi~~). This shows that we can restrict ourselves to 

the estimation of P (Y1:t1 Ol:t) for inference purposes. 

In the SMC framework, we must estimate the "target" density P (Y1:t1 Ol:t) 
pointwise up to a normalizing constant. By standard factorisation, one has 

t 

p(Yl:tlol:t) IX IT Pr( zk IYk)p(Ykl xl:k,Yl:k-l), wherep(YIIY1:0,Xl:0) ,@,p(Yll xd· 
k=l 

Since Pr (Zk I Yk) is known, we only need to estimate P (Yk I Xl:k, Yl:k-d up to a nor­
malizing constant. This predictive density can be computed using the Kalman filter. 
Given (Xl:k' Yl:k-l), the Kalman filter equations are the following. Set ,Bo lo = mo 



and ~o l o = ~o, then for t = 1, ... , k - 1 compute 

,Bt lt-1 = At,Bt- 1It- 1 
~t l t-1 = At~t-1 I t-1AI + BtBI 
St = \[IT (xt} ~tlt- 1 \[I (Xt) + 1 
Yt lt-1 = \[IT (Xt) ,Bt lt-1 

,Btlt = ,Bt lt -1 + ~tlt- 1 \[I (Xt) St- 1 (Yt - Yt lt - t) 

~tit = ~t l t-1 - ~t l t-1 \[I (xt} St- 1\[lT (Xt) ~t l t-1' 

(5) 

where ,Bt lt - 1 ~ 1E(,BtIXl:t-1,Yl:t-d, ,Bt lt ~ 1E(,Btlxl:t,Yl:t), Ytlt - 1 

IE(Ytlxl:t,Yl:t - d, ~t l t-1 ~ cov(,BtIXl:t- 1,Y1:t- 1), ~t l t ~ cov(,Btlxl:t,Yl:t) and 
St ~ cov (Ytl Xl:t,Y1:t-1). One obtains 

P (Yk I X1:k, Y1:k-d = N (Yk;Y klk- 1' Sk) . (6) 

3.2 Sampling Algorithm 

In this section, we briefly outline the PF algorithm for generating samples 
from p(dYl:tlol:t). (For details, please refer to our extended technical report at 
http://www . cs. berkeley. edu/ '" jfgf /publications . html.) Assume that at time t - 1 

we have N particles {Yi~Ld~l distributed according to P (dYl:t - 11 ol:t- d from 
which one can get the following empirical distribution approximation 

1 N 

PN (dYl:t-11 ol:t-d = N L JYi~;_l (dYl:t-d . 
i= l 

Various SMC methods can be used to obtain N new paths {Yi~~}~l distributed 
approximately according to P (dYl:t1 Ol:t)' The most successful of these methods 
typically combine importance sampling and a selection scheme. Their asymptotic 
convergence (N --t 00) is satisfied under mild conditions (Crisan and Doucet 2000). 

Since the selection step is standard (Doucet et al. 2001), we shall concentrate on 
describing the importance sampling step. To obtain samples from P( dYl:t IOl:t), we 
can sample from a proposal distribution Q(dYl:t) and weight the samples appropri­
ately. Typically, researchers use the transition prior as proposal distribution (Isard 
and Blake 1996). Here, we implement an optimal proposal distribution, that is one 
that minimizes the variance of the importance weights W (Yl:t) conditional upon not 
modifying the path Y1:t-1' In our case, we have 

( I ) {p(YtIXl:t ,Y1:t-dlI[o,+ oo) (Yt) if Zt = 1 
P Yt X1:t,Yl:t-1,Zt ex: p(Ytlxl:t ,Yl:t-dlI(- oo,o) (Yt) if Zt = 0 ' 

which is a truncated Gaussian version of (6) of and consequently 

W (Yl:t) ex: Pr (Zt I Xl:t, Y1:t - d = (1 _ <I> ( _ Y$,l ) ) z, <I> ( _ Y$,l ) 1-z, (7) 

The algorithm is shown in Figure 1. (Please refer to our technical report for con­
vergence details.) 

Remark 1 When we adopt the optimal proposal distribution, the importance weight 
Wt ex: Pr (Zt I X1:t, Y1:t - d does not depend on Yt. It is thus possible to carry out 
the selection step before the sampling step. The algorithm is then similar to the 
auxiliary variable particle filter of (Pitt and Shephard 1999). This modification to 
the original algorithm has important implications. It enables us to search for more 



Sequential importance sampling step 

. -(i) h. (i) :::{i) ( (i) ) 
• For t = 1, ... , N, (3t lt-1 = (3t lt-1 and sample Yt ~ P dYtl Xl:t, Yl:t-1 ' Zt . 

• For i = 1, ... , N, evaluate the importance weights using (7). 

Selection step 

• Multiply/Discard particles {~i),,B~i~_l}~l with respect to high/low impor-
. h (i) b' N . I { (i) (3(i) }N · tance welg ts W t to 0 tam partlc es Yt , t lt- 1 i=l ' 

Updatmg step 

• Compute ~t+1 I t given ~t l t - 1' 

• For i = 1, ... , N, use one step of the Kalman recursion (5) to compute {,B~i~ l l t } 
C) -C) 

given {y/ ,(3 ti t-1 } and ~t l t-1' 

Figure 1: RBPF for semiparametric binary classification. 

likely regions of the posterior at time t-1 using the information at time t to generate 
better samples at time t. In practice, this increases the robustness of the algorithm 
to outliers and allows us to apply it in situations where the distributions are very 
peaked (e.g., econometrics and almost deterministic sensors and actuators). 

Remark 2 The covariance updates of the Kalman jilter are outside the loop over 
particles. This results in substantial computational savings. 

4 Simulations 

To compare our model , using the RBPF algorithm, to standard logistic and probit 
classification with PF, we generated data from clusters that change with time as 
shown in Figure 2. This data set captures the characteristics of a fault detection 
problem that we are currently studying. (For some results of applying PF to fault 
detection in marine diesel engines , please refer to (H0jen-S0rensen et al. 2000). 
More results will become available once permission is granted.) This data cannot 
be easily separated with an algorithm based on a time-invariant model. 

For the results presented here, we set the initial distributions to: (30 '" N(O , 51) 
and Yo '" N(O, 51). The process matrices were set to A = I and B = JI, where 
82 = 0.1 is a smoothing parameter. The number of bases (cubic splines with random 
locations) was set to 10. (It is of course possible, when we have some data already, 
to initialise the bases locations so that they correspond to the input data. This trick 
for efficient classification in high dimensional input spaces is used in the support 
vector machines setting (Vapnik 1995).) The experiment was repeated with the 
number of particles varying between 10 and 400. Figure 3 shows the "value for 
money" summary plot. The new algorithm has a lower computational cost and 
shows a significant reduction in estimation variance. Note that the computation 
of the RBPF stays consistently low even for small numbers of particles. This has 
enabled us to apply the technique to large models consisting of hundreds of Bases 
using a suitable regulariser. Another advantage of PF algorithms for classification 
is that they yield entire probability estimates of class membership as shown in 
Figure 4. 
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Figure 2: Time-varying data. 
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Figure 3: Number of classification errors as the number of particles varies between 
10 and 400 (different computational costs). The algorithm with the augmentation 
trick (RBPF) is more efficient than standard PF algorithms. 

5 Conclusions 

In this paper, we proposed a dynamic Bayesian model for time-varying binary clas­
sification and an efficient particle filtering algorithm to perform the required com­
putations. The efficiency of our algorithm is a result of data augmentation, Rao­
Blackwellisation, adopting the optimal importance distribution, being able to swap 
the sampling and selection steps and only needing to update the Kalman filter means 
in the particles loop. This extends the realm of efficient particle filtering to the ubiq­
uitous setting of Gaussian latent variables and binary observations. Extensions to 
n-ary observations, different link functions and estimation of the hyper-parameters 
can be carried out in the same framework. 
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Figure 4: Predictive density. 
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