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Abstract 

Singularities are ubiquitous in the parameter space of hierarchical 
models such as multilayer perceptrons. At singularities, the Fisher 
information matrix degenerates, and the Cramer-Rao paradigm 
does no more hold, implying that the classical model selection the­
ory such as AIC and MDL cannot be applied. It is important to 
study the relation between the generalization error and the training 
error at singularities. The present paper demonstrates a method 
of analyzing these errors both for the maximum likelihood estima­
tor and the Bayesian predictive distribution in terms of Gaussian 
random fields, by using simple models. 

1 Introduction 

A neural network is specified by a number of parameters which are synaptic weights 
and biases. Learning takes place by modifying these parameters from observed 
input-output examples. Let us denote these parameters by a vector () = (01 , .. . , On). 
Then, a network is represented by a point in the parameter space S, where () plays 
the role of a coordinate system. The parameter space S is called a neuromanifold. 

A learning process is represented by a trajectory in the neuromanifold. The dy­
namical behavior of learning is known to be very slow, because of the plateau 
phenomenon. The statistical physical method [1] has made it clear that plateaus 
are ubiquitous in a large-scale perceptron. In order to improve the dynamics of 
learning, the natural gradient learning method has been introduced by taking the 
Riemannian geometrical structure of the neuromanifold into account [2 , 3]. Its 
adaptive version, where the inverse of the Fisher information matrix is estimated 
adaptively, is shown to have excellent behaviors by computer simulations [4, 5]. 

Because of the symmetry in the architecture of the multilayer perceptrons, the 
parameter space of the MLP admits an equivalence relation [6 , 7]. The residue class 
divided by the equivalence relation gives rise to singularities in the neuromanifold, 
and plateaus exist at such singularities [8]. The Fisher information matrix becomes 
singular at singularities, so that the neuromanifold is strongly curved like the space­
time including black holes. 

In the neighborhood of singularit ies, the Fisher-Cramer-Rao paradigm does not 



hold, and the estimator is no more subject to the Gaussian distribution even asymp­
totically. This is essential in neural learning and model selection. The AlC and MDL 
criteria of model selection use the Gaussian paradigm, so that it is not appropriate. 

The problem was first pointed out by Hagiwara et al. [9]. Watanabe [10] applied 
algebraic geometry to elucidate the behavior of the Bayesian predictive estimator in 
MLP, showing sharp difference in regular cases and singular cases. Fukumizu [11] 
gives a general analysis of the maximum likelihood estimators in singular statistical 
models including the multilayer perceptrons. 

The present paper is a first step to elucidate effects of singularities in the neuro­
manifold of multilayer perceptrons. We use a simple cone model to elucidate how 
different the behaviors of the maximum likelihood estimator and the Bayes predic­
tive distribution are from the regular case. To this end, we introduce the Gaussian 
random field [11, 12, 13], and analyze the generalization error and training error for 
both the mle (maximum likelihood estimator) and the Bayes estimator. 

2 Topology of neuromanifold 

Let us consider MLP with h hidden units and one output unit, 

h 

Y = L Vi<{J (Wi· x) + n. (1) 
i = l 

where y is output, x is input and n is Gaussian noise. Let us summarize all the 
parameters in a single parameter vector () = (Wl , ···, Wh; Vl , ···, Vh) and write 

h 

f(x; ()) = L Vi<{J (Wi· x). (2) 
i=l 

Then, () is a coordinate system of the neuromanifold. Because of the noise, the 
input-output relation is stochastic, given by the conditional probability distribution 

1 {I 2} p(ylx,()) = J2 exp -2(y-f(x;())) , (3) 

where we normalized the scale of noise equal to 1. Each point in the neuromanifold 
represents a neural network or its probability distribution. 

It is known that the behavior of MLP is invariant under 1) permutations of hidden 
units , and 2) sign change of both Wi and Vi at the same time. Two networks 
are equivalent when they are mapped by any of the above operations which form 
a group. Hence, it is natural to treat the residual space SI ::::J, where ::::J is the 
equivalence relation. There are some points which are invariant under a some non­
trivial isotropy subgroup, on which singularities occurs. 

When Vi = 0, vi<{J (Wi· x) = 0 so that all the points on the sub manifold Vi = 0 are 
equivalent whatever Wi is. We do not need this hidden unit. Hence, in M = SI ::::J, 

all of these points are reduced to one and the same point. When Wi = Wj hold, 
these two units may be merged into one, and when Vi +Vj is the same, the two points 
are equivalent even when they differ in Vi - Vj. Hence, the dimension reduction takes 
place in the subspace satisfying Wi = Wj. Such singularities occur on the critical 
submanifolds of the two types 

(4) 



3 Simple toy models 

Given training data, the parameters of the neural network are estimated or trained 
by learning. It is important to elucidate the effects of singularities on learning or 
estimation. We use simple toy models to attack this problem. One is a very simple 
multilayer percept ron having only one hidden unit. The other is a simple cone 
model: Let x be Gaussian random variable x E R d+2 , with mean p, and identity 
covariance matrix I , 

(5) 

and let 5 = {p,Ip, E Rd+2 } be the parameter space. The cone model M is a subset 
of 5, embedded as 

M : p, (6) 

where c is a constant, IIa2 11 = 1, W E 5 d and 5 d is a d-dimensional unit sphere. 
When d = 1, 51 is a circle so that W is replaced by angle B, and we have 

p, = ~ ccos B . ( 1 ) 
VI + c2 csinB 

(7) 

See Figure 1. The M is a cone, having (~, w) as coordinates, where the apex ~ = 0 
is the singular point. 

, , 

Figure 1: One-dimensional cone model 

The input-output relation of a simple multilayer perceptron is given by 

y = v<p(w . x) + n (8) 

When v = 0, the behavior is the same whatever w is. Let us put w = (3w , where 
(3 = Iwl and W E 5 d , and ~ = vlwl, 'l/J(x;(3,w) = <p{(3(w· x)} /(3. We then have 

y = ~'l/J(x;(3,w) + n (9) 

which shows the cone structure with apex at ~ = O. In this paper, we assume that 
(3 is knwon and does not need to be estimateed. 



4 Asymptotic statistical inference: generalization error and 
training error 

Let D = {Xl,···, XT} be T independent observations from the true distribution 
Po(x) which is specified by ~ = 0, that is , at the singular point. In the case 
of neural networks , the training set D is T input-output pairs (Xt, Yt), from the 
conditional probability distributions p(Ylx;~, w) and the true one is at ~ = O. The 
discussions go in parallel , so that we show here only the cone model. We study the 
characteristics of both the mle and the Bayesian predictive estimator. 

Let p(x) be the estimated distribution from data D . In the case of mle, it is given 
by p(x; 0) where 0 is the mle given by the maximizer of the log likelihood. For the 
Bayes estimator, it is given by the Bayes predictive distribution p(xID). 

We evaluate the estimator by the generalization error defined by the KL-divergence 
from Po(x) to p(x), 

Eg en = ED [K[po : pll, K[Po: p] = Epo [log ~(~i] . (10) 

Similarly, the training error is defined by using the empirical expectation, 

(11) 

In order to evaluate the estimator p, one uses E gen , but it is not computable. 
Instead, one uses the Etrain which is computable. Hence, it is important to see the 
difference between Egen and Etrain- This is used as a principle of model selection. 

When the statistical model M is regular, or the true distribution Po (x) is at a regular 
point , the mle-based p(x, 0) and the Bayes predictive distribution are asymptoti­
cally equivalent, and are Fisher efficient under reasonable regularity conditions, 

d 
Egen ~ 2T ' 

d 
Eg en ~ Etrain + T' (12) 

where d is the dimension number of parameter vector (j. 

All of these good relations do not hold in the singular case. The mle is no more 
asymptotically Gaussian, the mle and the Bayes estimators have different asymp­
totic characteristics, although liT consistency is guaranteed. The relation between 
the generalization and training error is different, so that we need a different model 
selection criterion to determine the number of hidden units. 

5 Gaussian random fields and mle 

Here, we introduce the Gaussian random field [11, 12, 13] in the case of the cone 
model. The log likelihood of data D is written as 

1 T 
L(D,~,w) = -"2l: Ilxt - ~a(w)112. (13) 

t=l 

Following Hartigan [13] (see also [11] for details), we first fix wand search for the ~ 
that maximizes L. This is easy since L is a quadratic function of ( The maximum 



t is given by 

(14) 

Y(w) = a(w) · X, (15) 

By the central limit theorem, Y (w) = a( w) . x is a Gaussian random field defined 
on Sd = {w}. By substituting t(w) in (14) the log likelihood function becomes 

T 
, I", 2 1 2 
L(w) = -2 ~ IIXtl1 + 2Y (w). 

t=l 

Therefore, the mle w is given by the maximizer of L(w), w = argmaxwy2(w). 

Theorem 1. In the case of the cone model, the mle satisfies 

Egen 2~ED h~p y 2 (w)] , 

Etrain = - 2~ED h:p y 2 (w)] . 

Corollary 1. When d is large, the mle satisfies 

Egen 
c2d 

:::::: 
2T(1 + c2 ) ' 

Etrain 
c2 d 

:::::: 
2T(1 + c2 )· 

(16) 

(17) 

(18) 

(19) 

(20) 

It should be remarked that the generalization and training errors depend on the 
shape parameter c as well as the dimension number d. 

6 Bayesian predictive distribution 

The Bayes paradigm uses the posterior probability of the parameters based on the 
set of observations D. The posterior probability density is written as, 

T 

p(~,wID) = c(D)1f(~,w) rrp(xtl~, w) , (21) 
t = l 

where c(D) is the normalization factor depending only on data D, 1f(~ , w) is a prior 
distribution on the parameter space. The Bayesian predictive distribution p(xID) is 
obtained by averaging p(xl~, w) with respect to the posterior distribution p(~, wiD), 
and can be written as 

p(xID) = J p(xl~ , w)p(~ , wID)d~dw. (22) 

The Bayes predictive distribution depends on the prior distribution 1f( ~, w) . As long 
as the prior is a smooth function, the first order asymptotic properties are the same 
for the mle and Bayes estimators in the regular case. However, at singularities, the 
situation is different. Here, we assume a uniform prior for w. For C we assume two 
different priors, the uniform prior and the Jeffreys prior. 



We show here a sketch of calculations in the case of Jeffreys prior, 7f(~,w) ex 1~ld . 
By introducing 

Id(u) = ~ J Iz + uldexp {_~Z2} dz, (23) 

after lengthy calculations, we obtain 

(24) 

where 

XT+! = ~(x + VTx) , Pd(x) = J Id(Y(w)) exp {~Y2(W)} dw. (25) 

Here Y(w) has the same form defined in (15), and Pd(x) is the function of the 
sufficient statistics x. By using the Edgeworth expansion, we have 

p(xID) 

(26) 

where \7 is the gradient and H2 (x) is the Hermite polynomial. We thus have the 
following theorem. 

Theorem 2. Under the Jeffreys prior for ~, the generalization error and the 
training error of the predictive distribution are given by 

Egen 

Etrain 

(27) 

(28) 

Under the uniform prior, the above results hold by replacing Id(Y) in the definition 
of Pd(X) by 1. In addition, From (24), we can easily obtain Egen = (d + 1)/2T for 
the Jeffreys prior, and Egen = 1/2T for the uniform prior. 

The theorem shows rather surprising results: Under the uniform prior, the general­
ization error is constant and does not depend on d. This is completely different from 
the regular case. However, this striking result is given rise to by the uniform prior 
on f The uniform prior puts strong emphasis on the singularity, showing that one 
should be very careful for choosing a prior when the model includes singularities. In 
the case of Jeffreys prior, the generalization error increases in proportion to d, which 
is the same result as the regular case. In addition, the symmetric duality between 
Egen and E train does not hold for both of the uniform prior and the Jeffreys prior. 

7 Gaussian random field of MLP 

In the case of MLP with one hidden unit , the log likelihood is written as 

1 T 2 
L(D;~, w)=-22:{Yt-~CPi9(w.Xt)} . (29) 

t=l 



Let us define a Gaussian random field depending on D and w, 

1 T 
Y(w) = 1m LYt<P,6 (w· Xt) '"" N(O,A(w,w')) 

yT t = l 

where A(w, w') = Ex [<p,6(w . x)<p,6 (w' . x)]. 

Theorem 3. For the mle, we have 

Egen 

Etrain 

where A(w) = A(w, w). 

In order to analyze the Bayes predictive distribution, we define 

1 ( Y (W)) { 1 y2 (w) } 
Sd(D,w) = d+1 Id JA(W) exp --A() . J A(w) A(w) 2 w 

(30) 

(31) 

(32) 

(33) 

(34) 

We then have the Edgeworth expansion of the predictive distribution of the form, 

_1_ exp {_ y2 } {I + -'!L EW[V'Sd(D, w)<p,6 (w . x)] 
p(Ylx, D) ~ f(L 1m [( )] (35) 

y27f 2 yT Ew Sd D ,w 

~ EW[V'V'Sd(D,w)A(w)] H ( )} 
+ 2T EW[Sd(D,w)] 2 Y , 

where V' is the gradient with respect to Y(w). We thus have the following theorem. 

Theorem 4. Under the Jeffreys prior for ~ , the generalization error and the 
training error of the predictive distribution are given by 

Egen 

Etrain = (36) 

Under the uniform prior, the above results hold by redefining 

(37) 

We can also obtain Egen = (d + 1)/2T for the Jeffreys prior, and Egen = 1/2T for 
the uniform prior. 

There is a nice correspondence between the cone model and MLP. However, there 
is no sufficient statistics in the MLP case, while all the data are summarized in the 
sufficient statistics x in the cone model. 



8 Conclusions and discussions 

We have analyzed the asymptotic behaviors of the MLE and Bayes estimators in 
terms of the generalization error and the training error by using simple statistical 
models (cone model and simple MLP), when the true parameter is at singularity. 
Since the classic paradigm of statistical inference based on the Cramer-Rao theorem 
does not hold in such a singular case, we need a new theory. The Gaussian random 
field has played a fundamental role. We can compare the estimation accuracy of 
the maximum likelihood estimator and the Bayesian predictive distribution from the 
results of analysis. Under the proposed framework, the various estimation methods 
can be studied and compared to each other. 
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