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In classical large information retrieval systems, the system responds 
to a user initiated query with a list of results ranked by relevance. 
The users may further refine their query as needed. This process 
may result in a lengthy correspondence without conclusion. We 
propose an alternative active learning approach, where the sys­
tem responds to the initial user 's query by successively probing the 
user for distinctions at multiple levels of abstraction. The system's 
initiated queries are optimized for speedy recovery and the user 
is permitted to respond with multiple selections or may reject the 
query. The information is in each case unambiguously incorporated 
by the system and the subsequent queries are adjusted to minimize 
the need for further exchange. The system's initiated queries are 
subject to resource constraints pertaining to the amount of infor­
mation that can be presented to the user per iteration. 

1 Introduction 

An IR system consists of a collection of documents and an engine that retrieves 
documents described by users queries. In large systems, such as the Web, queries 
are typically too vague, and hence, an iterative process in which the users refine their 
queries gradually has to take place. Since much dissatisfaction of IR users stems 
from long, tedious repetitive search sessions, our research is targeted at shortening 
the search session. We propose a new search paradigm of active information retrieval 
in which the user initiates only one query, and the subsequent iterative process is 
led by the engine/system. The active process exploits optimum experiment design 
to permit minimal effort on the part of the user. 

Our approach is related but not identical to the interactive search processes called 
relevance feedback. The primary differences pertain to the way in which the feedback 
is incorporated and queried from the user. In relevance feedback, the system has to 
deduce a set of "features" (words, phrases, etc. ) that characterize the set of selected 
relevant documents, and use these features in formulating a new query (e.g., [5,6]) . 
In contrast, we cast the problem as a problem of estimation and the goal is to 
recover the unknown document weights or relevance assessments. 



Our system also relates to the Scatter/Gather algorithm of browsing information 
systems [2], where the system initially scatters the document collection into a fixed 
number k of clusters whose summaries are presented to the user. The user select 
clusters from a new sub-collection, to be scattered again into k clusters, and so 
forth , until enumerating single documents. In our approach, documents are not 
discarded but rather their weighting is updated appropriately. Like many other 
clustering methods, the scatter/gather is based on hierarchical orderings. Overlap­
ping clusters were recently proposed to better match real-life grouping and allow 
natural summarizing and viewing [4]. 

This short paper focuses on the underlying methodology of the active learning 
approach. 

2 Active search 

Let X be the set of documents (elements) in the database and C = {GI , ... , Gm } 

a set of available clusters of documents for which appropriate summaries can be 
generated. The set of clusters typically includes individual documents and may 
come from a fiat, hierarchical, or overlapping clustering method. The clustering 
need not be static, however, and could be easily defined dynamically in the search 
process. 

Given the set of available clusters, we may choose a query set, a limited set of clusters 
that are presented to the user for selection at each iteration of the search process. 
The user is expected to choose the best matching cluster in this set or, alternatively, 
annotate the clusters with relevant/irrelevant labels (select the relevant ones). We 
will address both modes of operation. 

The active retrieval algorithm proceeds as follows: (1) it finds a small subset S 
of clusters to present, along with their summaries, to the user; (2) waits until 
the user selects none, one or more of the presented clusters; (3) uses the evidence 
from the user's selections to update the distribution over documents or relevance 
assessments; (4) outputs the top documents so far , ranked by their weights , and 
the iteration continues until terminated by the user or the system (based on any 
remaining uncertainty about the relevant documents or the implied ranking). 

The following sections address three primary issues: the user model, how to in­
corporate the information from user selections, and how to optimize the query set 
presented to the user. All the algorithms should scale linearly with the database 
size (and the size of the query set). 

3 Contrastive selection model 

We start with a contrastive selection model where the user is expected to choose 
only the best matching cluster in the query set. In case of multiple selections, we 
will interpret the marked clusters as a redefined cluster of the query set. While 
this interpretation will result in sub-optimal choices for the query set assuming the 
user consistently selects multiple clusters, the interpretation nevertheless obviates 
the need for modeling user's selection biases in this regard. An empty selection, on 
the other hand, suggests that the clusters outside the query set are deemed more 
likely. 
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Figure 1: a) A three level hierarchical transform of a flat Dirichlet; b) dependence 
of mean retrieval time on the database size (log-scale); c) median ratio of retrieval 
times corresponding to doubling the query set size. 

To capture the ranking implied by the user selections, we define weights (distribu­
tion) {Bx}, L:XEX Bx = lover the underlying documents. We assume that the user 
behavior is (probabilistic ally) consistent with one such weighting B;. The goal of a 
retrieval algorithm is therefore to recover this underlying weighting through inter­
actions with the user . The resulting (approximation to) B; can be used to correctly 
rank the documents or, for example, to display all the documents with sufficiently 
large weight (cf. coverage). Naturally, B; changes from one retrieval task to another 
and has to be inferred separately in each task. We might estimate a user specific 
prior (model) over the document weights to reflect consistent biases that different 
users have across retrieval tasks. 

We express our prior belief about the document weights in terms of a Dirichlet 
distribution: P(B) = liZ· rrxExB~' -l, where Z = [f1xExr(ax)l/r(L:~=l ax). 

3.1 Inference 

Suppose a fiat Dirichlet distribution P(B) over the document weights and a fixed 
query set S = {CS1, .. . ,CSk }. We evaluate here the posterior distribution P(Bly) 
given the user response y. The key is to transform P(B) into a hierarchical form 
so as to explicate the portion of the distribution potentially affected by the user 
response. The hierarchy, illustrated in Figure 1a), contains three levels: selection 
of S or X \ S; choices within the query set S (of most interest to us) and those 
under X \ S; selections within the clusters CS1 in S. For simplicity, the clusters are 
assumed to be either nested or disjoint , i.e. , can be organized hierarchically. 

We use B?) , i = 1,2 to denote the top level parameters, B;f{, j = 1, ... , k for 

the cluster choices within the query set whereas B~~~, x ~ S gives the document 

choices outside S. Finally, B~~j for x E CSj indicate the parameters associated 
with the cluster CSj E S. The original flat Dirichlet P(B) can be written as a 

product p(B(l) )P(BW )P(BW) [rr~=l P( B(I~)) ] with the appropriate normalization 

constraints. If clusters in S overlap, the expansion is carried out in terms of the 
disjoint subsets. The parameters governing the Dirichlet component distributions 
are readily obtained by gathering the appropriate parameters ax of the original 

Dirichlet (cf. [3]). For example, a~l) = L:xES ax; am = L:xECs j a x, for j = 

1, ... , k; a~~~ = ax, for x ~ S; a~~j = ax, whenever x E CSj , j = 1, ... , k. 



If user selects cluster CSy , we will update P( 8W) which reduces to adjusting the 

counts a~~i f- a~~i + 1. The resulting new parameters give rise to the posterior dis­

tribution P(8W IY) and, by including the other components, to the overall posterior 

P(8IY). If the user selects "none of these items," only the first level parameters 8~1) 
will be updated. 

3.2 Query set optimization 

Our optimization criterion for choosing the query set S is the information that we 
stand to gain from querying the user with it. Let y indicate the user choice, the 
mutual information between y and the parameters 8 is given by (derivation omitted) 

J(Yi 8) (1) 

(2) 

where P(y) = a~~iI (I::=l a~~~) defines our current expectation about user selection 

from Si H(y) = - I:~=l P(y) log P(y) is the entropy of the selections y, and w(·) 
is the Di-gamma function , defined as w(z) = djdzlogr(z). Extending the criterion 
to "no selection" is trivial. 

To simplify, we expand the counts aW in terms of the original (flat) counts ax, 
and define for all clusters (whether or not they appear in the query set) the weights 
ai = I:xECi ax, bi = aiw(ai + 1) - ailogai. The mutual information criterion now 

depends only on as = I:~=l aSi = I:xES ax, the overall weight of the query set and 

bs = I:~= l bS i which provides an overall measure of how informative the individual 
clusters in S are. With these changes, we obtain: 

(2) bs 
J(Y i 8. ll) = - + log(as) - w(as + 1) 

as 
(3) 

We can optimize the choice of S with a simple greedy method that successively 
finds the next best cluster index i to include in the information set. This algorithm 
scales as O(km), where m is the number of clusters in our database and k is the 
the maximal query set size in terms of the number of clusters. 

Note that this simple criterion excludes nested or overlapping clusters from S. In 
a more general context, the bookkeeping problem associated with the overlapping 
clusters is analogous to that of the Kikuchi expansion in statistical physics (cf. [7]) . 

3.3 Projection back to a flat Dirichlet 

The hierarchical posterior is not a flat Dirichlet anymore. To maintain simplic­
ity, we project it back into a flat Dirichlet in the KL-divergence sense: P~ I Y = 

argminQo KL(Pe1yIIQe), where P(8Iy) is the hierarchical posterior expressed in 
terms of the original flat variables 8x ,x E X (but no longer a flat Dirichlet). The 

transformation from hierarchical to flat variables is given by: 8x = 8~1 ) 8JN 8~~j for 



x E CSj , j = 1, ... ,k, and Ox = O~l) o~~L for x E X \ S. As a result , when x E CSj 

for some j = 1, ... , k we get (derivation omitted) 

(4) 

where y denotes the user selection. For x E X\S, EO ly log Ox = w(ax) - W(L zEX a z) 

If we define rx = Ee ly log Ox for all x E X, then the counts f3x corresponding to the 
flat approximation Qo can be found by minimizing 

(5) 
xEX xEX 

where we have omitted any terms not depending on f3x . This is a strictly convex 
optimization problem over the convex set f3x ~ 0, x E X and therefore admits a 
unique solution. Furthermore, we can efficiently apply second order methods such 
as Newton-Raphson in this context due to the specific structure of the Hessian: 
1i = D - el1 T, where D is a diagonal matrix containing the derivatives of the 
di-gamma function l w'( f3x) = d/df3x w( f3x) and e = W'(LXEX f3x ). Each Newton­
Raphson iteration requires only O(m) space/time. 

3.4 Decreasing entropy 

Since the query set was chosen to maximize the mutual information between the 
user selection and the parameters 0, we get the maximal reduction in the expected 
entropy of the parameters: J(y; 0) = H(Po) - Ey H(Pe ly) 

As discussed in the previous section, we cannot maintain the true posterior but have 
to settle for a projection. It is therefore no longer obvious that the expected entropy 
of the projected posterior possesses any analogous guarantees; indeed, projections 
of this type typically increase the entropy. We can easily show, however , that the 
expected entropy is non-increasing: 

since P~ y is the minimizing argument. It is possible to make a stronger state­
ment indicating that the expected entropy of the projected distribution decreases 
monotonically after each iteration. 

Theorem 1 For any 10 > 0, Ey {H(Qo IY) } :::; H(Pe) - f(k -l)/as + 0(102 ), where 
k is the size of the query set and as = L zEs a z . 

While this result is not tight , it does demonstrate that the projection back into a 
flat Dirichlet still permits a semi-linear decrease in the entropy2. The denominator 
of the first order term, i.e., as, can increase only by 1 at each iteration. 

IThese derivatives can be evaluated efficiently on the basis of the highly accurate ap­
proximation to the di-gamma function . 

2Note that the entropy of a Dirichlet distribution is not bounded from below (it is 
bounded from above) . The manner in which the Dirichlet updates are carried out (how 
a x change) still keeps the entropy a meaningful quantity. 



4 Annotation model 

The contrastive selection approach discussed above operates a priori in a single 
topic mode3 . The expectation that the user should select the best matching cluster 
in the query set also makes an inefficient use of the query set. We provide here an 
analogous development of the active learning approach under the assumption that 
the user classifies rather than contrasts the clusters. 

The user responses are now assumed to be consistent with a noisy-OR model 

P(Ye = 1Ir*) = 1 - (1 - qo) II (1 - qr: (7) 
xEe 

where Ye is the binary relevance annotation (outcome) for a cluster c in the query, 
r; E {O, 1 }, x E X are the underlying task specific relevance assignments to the 
elements in the database, q is the probability that a relevant element in the cluster 
is caught by the user, and qo is the probability that a cluster is deemed "relevant" 
in the absence of any relevant elements. While the parameters qo and q could easily 
be inferred from past searches, we assume here for simplicity that they are known 
to the search algorithm. The user annotations of different clusters in the query set 
are independent of each other, even for overlapping clusters. 

To ensure that we can infer the unknown relevance assignments from the observ­
abIes (cluster annotations), we require identifiability: the annotation probabilities 
P(Ye = 1Ir*), for all c E C, should uniquely determine {r;}. Equivalently, knowing 
the number of relevant documents in each cluster should enable us to recover the 
underlying relevance assignments. This is a property of the cluster structure and 
holds trivially for any clustering with access to individual elements. 

The search algorithm maintains a simple independent Bernoulli model over the 
unknown relevance assignments: P(rIB) = TIxEx B;' (1 - Bx) l - r • . This gives rise 
to a marginal noisy-OR model over cluster annotations: 

P(Ye = liB) = L P(Ye = 1Ir)P(rIB) = 1 - (1 - qo) II (1- Bxq) (8) 
r x E e 

The uncertainty about the relevance assignments {rx} makes the system beliefs 
about the cluster annotations dependent on each other. The parameters (relevance 
probabilities) {Bx} are, of course, specific to each search task. 

4.1 Inference and projection 

Given fie E {O, 1} for a single cluster c, we can evaluate the posterior P(rlfie, B) over 
the relevance assignments. Similarly to noisy-OR graphical models, this posterior 
can be (exponentially) costly to maintain and we instead sequentially project the 
posterior back into the set of independent Bernoulli distributions. The projection 
here is in the moments sense (m- projection): Pr;(I' = argminQr KL(Pr IVc,(lIIQr), 
where Qr is an independent Bernoulli model. The m-projection preserves the pos­
terior expectations B~ ; vc = Er lYc {rx} used for ranking the documents. 

3Dynamic redefinition of clusters partially avoids this problem. 



The projection yields simple element-wise updates for the parameters4 : for x E c, 

(9) 

where Po = P(yc = OIB) = (l-qo) IT xEc(l-Bxq) is the only parameter that depends 
on the cluster as a whole. 

4.2 Query set optimization 

The best single cluster c E C to query has the highest mutual information between 
the expected user response Yc = {O, I} and the underlying relevance assignments 
l' = {rx}xEx, maximizing I(yc; r iB) = EYe {KL( PrIO ,Ye II Pr IO)}' This mutual infor­
mation cannot be evaluated in closed form, however. We use a lower bound: 

I(yc; r iB ) ::::: EYe { l: D(Bx;Ye II Bx) } d~ Ip(yc; riB) (10) 
xE c 

where BX;Ye' x E X are the parameters of the m-projected posterior and 
KL(Bx;yJBx) is the KL-divergence between two Bernoulli distributions with mean 
parameters BX;Ye and Bx, respectively. 

To alleviate the concern that the lower bound would prematurely terminate the 
search, we note that if Ip(r; B) = 0 for all c E C, then Bx E {O, I} for all x E X. 
In other words , the search terminates only if we are already fully certain about the 
underlying relevance assignments. 

The best k clusters to query are those maximizing 

Finding the optimal query set under this criterion (even with the m-projections) 
involves O(nk2k) operations. We select the clusters sequentially while maintain­
ing an explicit dependence on the hypothetical outcome (classification) of only 
the previous cluster choice. More precisely, we combine the cluster selection with 
conditional projections: for k > 1, Ck = argmaxclp(Yc,Yck;rIBk - l), B~.y = , ek 
E{ B~;!k_l ,Yek I YCk }. The mutual information terms do not, however, decompose 
additively with the elements in the clusters. The desired O(kn) scaling of the se­
lection algorithm requires a cached spline reconstruction5 . 

4.3 Sanity check results 

Figure 1 b) gives the mean number of iterations of the query process as function of 
the database size. Each point represents an average over 20 runs with parameters 

4The parameters 8x;fiq ,fi e2 , ... ,fi ek resulting from k successive projections define a martin­
gale process Ey q ,Ye2 , . .. ,Yek {8x;yq ,Ye2 , . . . ,Yek } = 8x, x EX, where the expectation is taken 
w.r .t . to the posterior approximation . 

5The mutual information terms for select fixed values of po can be cached additively 
relative to the cluster structure. The actual Po dependence is reconstructed (quadratically) 
from the cached values (Ip is convex in po) . 



k = 5, qo = 0.05, and q = 0.95. The user responses were selected on the basis of the 
same parameters and a randomly chosen (single) underlying element of interest. 
The search is terminated when the sought after element in the database has the 
highest rank according to {Ox} , x E X. The randomized cluster structures were 
relatively balanced and hierarchical. Similarly to the theoretically optimal system, 
the performance scales linearly with the log-database size. Results for random 
choice of the clusters in the query are far outside the figure. 

Figure lc), on the other hand, demonstrates that increasing the query set size 
appropriately reduces the interaction time. Note that since all the clusters in the 
query set have to be chosen prior to getting feedback from any of the clusters, 
doubling the query set size cannot theoretically reduce the retrieval time to a half. 

5 Discussion 

The active learning approach proposed here provides the basic methodology for 
optimally querying the user at multiple levels of abstraction. There are a number 
of extensions to the approach presented in this short paper. For example, we can 
encourage the user to provide confidence rated selections/annotations among the 
presented clusters. Both user models can be adapted to handle such selections. 
Analyzing the fundamental trade-offs between the size of the query set (resource 
constraints) and the expected completion time of the retrieval process will also be 
addressed in later work. 
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