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Abstract 

We have designed and fabricated a VLSI synapse that can learn a 
conditional probability or correlation between spike-based inputs 
and feedback signals. The synapse is low power, compact, provides 
nonvolatile weight storage, and can perform simultaneous multipli-
cation and adaptation. We can calibrate arrays of synapses to en-
sure uniform adaptation characteristics. Finally, adaptation in our 
synapse does not necessarily depend on the signals used for com-
putation. Consequently, our synapse can implement learning rules 
that correlate past and present synaptic activity. We provide analy-
sis and experimental chip results demonstrating the operation in 
learning and calibration mode, and show how to use our synapse to 
implement various learning rules in silicon. 

1 Introduct ion 

Computation with conditional probabilities and correlations underlies many models of 
neurally inspired information processing. For example, in the sequence-learning neural 
network models proposed by Levy [1], synapses store the log conditional probability that 
a presynaptic spike occurred given that the postsynaptic neuron spiked sometime later. 
Boltzmann machine synapses learn the difference between the correlations of pairs of 
neurons in the sleep and wake phase [2]. In most neural models, computation and adapta-
tion occurs at the synaptic level. Hence, a silicon synapse that can learn conditional prob-
abilities or correlations between pre- and post-synaptic signals can be a key part of many 
silicon neural-learning architectures. 

We have designed and implemented a silicon synapse, in a 0.35µm CMOS process, that 
learns a synaptic weight that corresponds to the conditional probability or correlation 
between binary input and feedback signals. This circuit utilizes floating-gate transistors to 
provide both nonvolatile storage and weight adaptation mechanisms [3]. In addition, the 
circuit is compact, low power, and provides simultaneous adaptation and computation. 
Our circuit improves upon previous implementations of floating-gate based learning syn-
apses [3,4,5] in several ways. 

First, our synapse appears to be the first spike-based floating-gate synapse that imple-
ments a general learning principle, rather than a particular learning rule [4,5]. We demon-



 

strate that our synapse can learn either the conditional probability or the correlation be-
tween input and feedback signals. Consequently, we can implement a wide range of syn-
aptic learning networks with our circuit. 

Second, unlike the general correlational learning synapse proposed by Hasler et. al. [3], 
our synapse can implement learning rules that correlate pre- and postsynaptic activity that 
occur at different times. Learning algorithms that employ time-separated correlations 
include both temporal difference learning [6] and recently postulated temporally asym-
metric Hebbian learning [7]. Hasler’s correlational floating-gate synapse can only per-
form updates based on the present input and feedback signals, and is therefore unsuitable 
for learning rules that correlate signals that occur at different times. Because signals that 
control adaptation and computation in our synapse are separate, our circuit can imple-
ment these time-dependent learning rules.  

Finally, we can calibrate our synapses to remove mismatch between the adaptation 
mechanisms of individual synapses. Mismatch between the same adaptation mechanisms 
on different floating-gate transistors limits the accuracy of learning rules based on these 
devices. This problem has been noted in previous circuits that use floating-gate adapta-
tion [4,8]. In our circuit, different synapses can learn widely divergent weights from the 
same inputs because of component mismatch. We provide a calibration mechanism that 
enables identical adaptation across multiple synapses despite device mismatch. To our 
knowledge, this circuit is the first instance of a floating-gate learning circuit that includes 
this feature. 

This paper is organized as follows. First, we provide a brief introduction to floating-gate 
transistors. Next, we provide a description and analysis of our synapse, demonstrating 
that it can learn the conditional probability or correlation between a pair of binary signals. 
We then describe the calibration circuitry and show its effectiveness in compensating for 
adaptation mismatches. Finally, we discuss how this synapse can be used for silicon im-
plementations of various learning networks. 

2 Floating-gate transistors 

Because our circuit relies on floating-gate transistors to achieve adaptation, we begin by 
briefly discussing these devices. A floating-gate transistor (e.g. transistor M3 of Fig.1(a)) 
comprises a MOSFET whose gate is isolated on all sides by SiO2. A control gate ca-
pacitively couples signals to the floating gate. Charge stored on the floating gate imple-
ments a nonvolatile analog weight; the transistor’s output current varies with both the 
floating-gate voltage and the control-gate voltage. We use Fowler-Nordheim tunneling 
[9] to increase the floating-gate charge, and impact-ionized hot-electron injection (IHEI) 
[10] to decrease the floating-gate charge. We tunnel by placing a high voltage on a tun-
neling implant, denoted by the arrow in Fig.1(a). We inject by imposing more than about 
3V across the drain and source of transistor M3. The circuit allows simultaneous adapta-
tion and computation, because neither tunneling nor IHEI interfere with circuit operation. 
Over a wide range of tunneling voltages Vtun, we can approximate the magnitude of the 
tunneling current I tun as [4]: 

( )0 exp /tun tun tun fgI I V V Vχ= −   (1) 

where Vtun is the tunneling-implant voltage, Vfg is the floating-gate voltage, and I tun0 
and Vχ are fit constants. Over a wide range of transistor drain and source voltages, 
we can approximate the magnitude of the injection current I inj as [4]: 

 ( )1 /
0 exp ( ) /tU V
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where Vs and Vd are the drain and source voltages, I inj0 is a pre-exponential current, Vγ is a 
constant that depends on the VLSI process, and Ut is the thermal voltage kT/q. 

3 The s i l icon synapse 

We show our silicon synapse in Fig.1. The synapse stores an analog weight W, multiplies 
W by a binary input Xin, and adapts W to either a conditional probability P(Xcor|Y) or a 
correlation P(XcorY). Xin is analogous to a presynaptic input, while Y is analogous to a 
postsynaptic signal or error feedback. Xcor is a presynaptic adaptation signal, and typically 
has some relationship with Xin. We can implement different learning rules by altering the 
relationship between Xcor and Xin. For some examples, see section 4. 

We now describe the circuit in more detail. The drain current of floating-gate transistor 
M4 represents the weight value W. Because the control gate of M4 is fixed, W depends 
solely on the charge on floating-gate capacitor C1. We can switch the drain current on or 
off using transistor M7; this switching action corresponds to a multiplication of the 
weight value W by a binary input signal, Xin. We choose values for the drain voltage of 
the M4 to prevent injection. A second floating-gate transistor M3, whose gate is also con-
nected to C1, controls adaptation by injection and tunneling. Simultaneously high input 
signals Xcor and Y cause injection, increasing the weight. A high Vtun causes tunneling, 
decreasing the weight. We either choose to correlate a high Vtun with signal Y or provide 
a fixed high Vtun throughout the adaptation process. The choice determines whether the 
circuit learns a conditional probability or a correlation, respectively. 

Because the drain current sourced by M4 provides is the weight W, we can express W in 
terms of M4’s floating-gate voltage, Vfg. Vfg includes the effects of both the fixed control-
gate voltage and the variable floating-gate charge. The expression differs depending on 
whether the readout transistor is operating in the subthreshold or above-threshold regime. 
We provide both expressions below: 
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Here V0 is a constant that depends on the threshold voltage and on Vdd, Ut is the 
thermal voltage kT/q, κ is the floating-gate-to-channel coupling coefficient, and I0 is 
a fixed bias current. Eq. 3 shows that W depends solely on Vfg, (all the other factors 
are constants). These equations differ slightly from standard equations for the 
source current through a transistor due to source degeneration caused by M4. This 
degeneration smoothes the nonlinear relationship between Vfg and Is; its addition to 
the circuit is optional.  

3 .1  Weig ht  a da pta t io n  

Because W depends on Vfg, we can control W by tunneling or injecting transistor M3. In 
this section, we show that these mechanisms enable our circuit to learn the correlation or 
conditional probability between inputs Xcor (which we will refer to as X) and Y. Our 
analysis assumes that these statistics are fixed over some period during which adaptation 
occurs. The change in floating-gate voltage, and hence the weight, discussed below 
should therefore be interpreted in terms of the expected weight change due to the statis-
tics of the inputs. We discuss learning of conditional probabilities; a slight change in the 
tunneling signal, described previously, allows us to learn correlations instead. 

We first derive the injection equation for the floating-gate voltage in terms of the joint 
probability P(X,Y) by considering the relationship between the input signals and Is, Vs, 



 

and Vd of M3. We assume that transistor M1 is in saturation, constraining Is at M3 to be 
constant. Presentation of a joint binary event (X,Y) closes nFET switches M5 and M6, 
pulling the drain voltage Vd of M3 to 0V and causing injection. Therefore the probability 
that Vd is low enough to cause injection is the probability of the joint event Pr(X,Y). By 
Eq.2, the amount of the injection is also dependent on M3’s source voltage Vs. Because 
M3 is constrained to a fixed channel current, a drop in the floating-gate voltage, ∆Vfg, 
causes a drop in Vs of magnitude κ∆Vfg. Substituting these expressions into Eq.2 results 
in a floating-gate voltage update of: 

 0 fg  ( / ) Pr( , )exp( V / )fg inj injdV dt I X Y Vγκ= −  (4) 

where I inj0 also includes the constant source current. Eq.4 shows that the floating-gate 
voltage update due to injection is a function of the probability of the joint event (X,Y). 

Next we analyze the effects of tunneling on the floating-gate voltage. The origin of the 
tunneling signal determines whether the synapse is learning a conditional probability or a 
correlation. If the circuit is learning a conditional probability, occurrence of the condi-
tioning event Y gates a corresponding high-voltage (~9V) signal onto the tunneling im-
plant. Consequently, we can express the change in floating-gate voltage due to tunneling 
in terms of the probability of Y, and the floating-gate voltage. 

 0( / ) Pr( )exp( / )fg tun tun fgdV dt I Y V Vχ= −  (5) 

Eq.5 shows that the floating-gate voltage update due to tunneling is a function of the 
probability of the event Y. 
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Fig. 1. (a) Synapse schematic. (b) Plot of 
equilibrium weight in the subthreshold re-
gime versus the conditional probability 
P(X|Y), showing both experimental chip data 
and a fit from Eq.7 (c). Plot of equilibrium 
weight  versus conditional probability in the 
above-threshold regime, again showing chip 
data and a fit from Eq.7. 

 



 

3.2 Weight equilibrium 

To demonstrate that our circuit learns P(X|Y), we show that the equilibrium weight of the 
synapse is solely a function of P(X|Y). The equilibrium weight of the synapse is the 
weight value where the expected weight change over time equals zero. This weight value 
corresponds to the floating-gate voltage where injection and tunneling currents are equal. 
To find this voltage, we equate Eq’s. 4 and 5 and solve: 
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To derive the equilibrium weight, we substitute Eq.6 into Eq.3 and solve: 
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Consequently, the equilibrium weight is a function of the conditional probability below 
threshold and a function of the log-squared conditional probability above threshold. Note 
that the equilibrium weight is stable because of negative feedback in the tunneling and 
injection processes. Therefore, the weight will always converge to the equilibrium value 
shown in Eq.7. Figs. 1(b) and (c) show the equilibrium weight versus the conditional 
P(X|Y) for both sub- and above-threshold circuits, along with fits to Eq.7.  

Note that both the sub- and above-threshold relationship between P(X|Y) and the equilib-
rium weight enables us to compute the probability of a vector of synaptic inputs X given 
a post-synaptic response Y.  In both cases, we can apply the outputs currents of an array 
of synapses through diodes, and then add the resulting voltages via a capacitive voltage 
divider, resulting in a voltage that is a linear function of log P(X|Y).  

3.3 Calibration circuitry 

Mismatch between injection and tunneling in different floating-gate transistors can 
greatly reduce the ability of our synapses to learn meaningful values. Experimental data 
from floating-gate transistors fabricated in a 0.35µm process show that injection varies by 
as much as 2:1 across a chip, and tunneling by up to 1.2:1. The effect of this mismatch on 
our synapses causes the weight equilibrium of different synapses to differ by a 
multiplicative gain. Fig.2 (b) shows the equilibrium weights of an array of six synapses 
exposed to identical input signals. The variation of the synaptic weights is of the same 
order of magnitude as the weights themselves, making large arrays of synapses all but 
useless for implementing many learning algorithms. 

We alleviate this problem by calibrating our synapses to equalize the pre-exponential 
tunneling and injection constants. Because the dependence of the equilibrium weight on 
these constants is determined by the ratio of I inj0/I tun0, our calibration process changes I inj 
to equalize the ratio of injection to tunneling across all synapses. We choose to calibrate 
injection because we can easily change I inj0 by altering the drain current through M1. 

Our calibration procedure is a self-convergent memory write [11], that causes the equilib-
rium weight of every synapse to equal the current Ical. Calibration requires many operat-



 

ing cycles, where, during each cycle, we first increase the equilibrium weight of the syn-
apse, and second, we let the synapse adapt to the new equilibrium weight. 

We create the calibrated synapse by modifying our original synapse according to Fig. 
2(a). We convert M1 into a floating-gate transistor, whose floating-gate charge thereby 
sets M3’s channel current, providing control of I inj0 of Eq.7. Transistor M8 modifies M1’s 
gate charge by means of injection when M9’s gate is low and Vcal is low. M9’s gate is only 
low when the equilibrium weight W is less than Ical. During calibration, injection and tun-
neling on M3 are continuously active. We apply a pulse train to Vcal; during each pulse 
period, Vcal is predominately high. When Vcal is high, the synapse adapts towards its equi-
librium weight. When Vcal pulses low, M8 injects, increasing the synapse’s equilibrium 
weight W. We repeat this process until the equilibrium weight W matches Ical, causing 
M9’s gate voltage to rise, disabling Vcal and with it injection. To ensure that a precali-
brated synapse has an equilibrium weight below Ical, we use tunneling to erase all bias 
transistors prior to calibration. Fig.2(c) shows the equilibrium weights of six synapses 
after calibration. The data show that calibration can reduce the effect of mismatched ad-
aptation on the synapse’s learned weight to a small fraction of the weight itself. 

Because M1 is a floating-gate transistor, its parasitic gate-drain capacitance causes a mild 
dependence between M1’s drain voltage and source current. Consequently, M3’s floating-
gate voltage now affects its source current (through M1’s drain voltage), and we can 
model M3 as a source-degenerated pFET [3].  The new expression for the injection cur-
rent in M3 is: 
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Fig. 2. (a) Schematic of calibrated synapse 
with signals used during the calibration pro-
cedure. (b) Equilibrium weights for array of 
synapses shown in Fig.1a. (c) Equilibrium 
weights for array of calibrated synapses after 
calibration.  
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where k1 is close to zero. The new expression for injection slightly changes the α and η 
terms of the weight equilibrium in Eq.7, although the qualitative relationship between the 
weight equilibrium and the conditional probability remains the same.  

4 Implementing silicon synaptic learning rules 

In this section we discuss how to implement a variety of learning rules from the computa-
tional-neurobiology and neural-network literature with our synapse circuit.  

We can use our circuit to implement a Hebbian learning rule. Simultaneously activating 
both M5 and M6 is analogous to heterosynaptic LTP based on synchronized pre- and post-
synaptic signals, and activating tunneling with the postsynaptic Y is analogous to homo-
synaptic LTD. In our synapse, we tie Xin and Xcor together and correlate Vtun with Y. 

Our synapse is also capable of emulating a Boltzmann weight-update rule [2]. This 
weight-update rule derives from the difference between correlations among neurons when 
the network receives external input, and when the network operates in a free running 
phase (denoted as clamped and unclamped phases respectively). With weight decay, a 
Boltzmann synapse learns the difference between correlations in the clamped and un-
clamped phase. We can create a Boltzmann synapse from a pair of our circuits, in which 
the effective weight is the difference between the weights of the two synapses. To im-
plement a weight update, we update one silicon synapse based on pre- and postsynaptic 
signals in the clamped phase, and update the other synapse in the unclamped phase. We 
do this by sending Xin to Xcor of one synapse in the clamped phase, and sending Xin to Xcor 

of the other synapse in the negative phase. Vtun remains constant throughout adaptation. 

Finally, we consider implementing a temporally asymmetric Hebbian learning rule [7] 
using our synapse. In temporally asymmetric Hebbian learning, a synapse exhibits LTP 
or LTD if the presynaptic input occurs before or after the postsynaptic response, respec-
tively. We implement an asymmetric learning synapse using two of our circuits, where 
the synaptic weight is the difference in the weights of the two circuit. We show the circuit 
in Fig. 3. Each neuron sends two signals: a neuronal output, and an adaptation time win-
dow that is active for some time afterwards. Therefore, the combined synapse receives 
two presynaptic signals and two postsynaptic signals. The relative timing of a postsynap-
tic response, Y, with the presynaptic input, X, determines whether the synapse undergoes 
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Fig. 3. A method for achieving spike-time dependent plasticity in silicon. 



 

LTP or LTD. If Y occurs before X, Y’s time window correlates with X, causing injection 
on the negative synapse, decreasing the weight. If Y occurs after X, Y correlates with X’s 
time window, causing injection on the positive synapse, increasing the weight. Hence, 
our circuit can use the relative timing between presynaptic and postsynaptic activity to 
implement learning. 

5 Conclusion 

We have described a silicon synapse that implements a wide range of spike-based learn-
ing rules, and that does not suffer from device mismatch. We have also described how we 
can implement various silicon-learning networks using this synapse. In addition, although 
we have only analyzed the learning properties of the synapse for binary signals, we can 
instead use pulse-coded analog signals.  One possible avenue for future work is to ana-
lyze the implications of different pulse-coded schemes on the circuit’s adaptive behavior.  
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