
Incremental Learning and Selective
Sampling via Parametric Optimization

Framework for SVM

Shai Fine
IBM T. J. Watson Research Center

fshai@us.ibm.com

Katya Scheinberg
IBM T. J. Watson Research Center

katyas@us.ibm.com

Abstract

We propose a framework based on a parametric quadratic program­
ming (QP) technique to solve the support vector machine (SVM)
training problem. This framework, can be specialized to obtain two
SVM optimization methods. The first solves the fixed bias prob­
lem, while the second starts with an optimal solution for a fixed
bias problem and adjusts the bias until the optimal value is found.
The later method can be applied in conjunction with any other ex­
isting technique which obtains a fixed bias solution. Moreover, the
second method can also be used independently to solve the com­
plete SVM training problem. A combination of these two methods
is more flexible than each individual method and, among other
things, produces an incremental algorithm which exactly solve the
1-Norm Soft Margin SVM optimization problem. Applying Selec­
tive Sampling techniques may further boost convergence.

1 Introduction

SVM training is a convex optimization problem which scales with the training set
size rather than the input dimension. While this is usually considered to be a desired
quality, in large scale problems it may cause training to be impractical. The
common way to handle massive data applications is to turn to active set methods,
which gradually build the set of active constraints by feeding a generic optimizer
with small scale sub-problems. Active set methods guarantee to converge to the
global solut ion, however, convergence may be very slow, it may require too many
passes over the data set, and at each iteration there's an implicit computational
overhead of the actual active set selection. By using some heuristics and caching
mechanisms, one can, in practice, reduce this load significantly.

Another common practice is to modify the SVM optimization problem such that
it wont handle the bias term directly. Instead, the bias is either fixed in advance!
(e.g. [6]) or added as another dimension to the feature space (e.g. [4]). The
advantage is that the resulting dual optimization problem does not contain the
linear constraint, in which case one can suggest a procedure which updates only

IThroughout this sequel we will refer to such solut ion as the fixed bias solut ion.

one Lagrange multiplier at a time. Thus, an incremental approach, which efficiently
updates an existing solution given a new training point, can be devised. Though
widely used, the solution resulting from this practice has inferior generalization
performances and the number of SY tends to be much higher [4].

To the best of our knowledge, the only incremental algorithm suggested so far to
exactly solve the 1-Norm Soft Margin2 optimization problem, have been described
by Cauwenberghs and Poggio at [3]. This algorithm, handles Adiabatic increments
by solving a system of linear equations resulted from a parametric transcription of
the KKT conditions. This approach is somewhat close to the one independently
developed here and we offer a more thorough comparison in the discussion section.

In this paper3 we introduce two new methods derived from parametric QP tech­
niques. The two methods are based on the same framework, which we call Para­
metric Optimization for Kernel methods (POKER), and are essentially the same
methodology applied to somewhat different problems. The first method solves the
fixed bias problem, while the second one starts with an optimal solution for a fixed
bias problem and adjusts the bias until the optimal value is found. Each of these
methods can be used independently to solve the SYM training problem. The
most interesting application, however, is alternating between the two methods to
obtain a unique incremental algorithm. We will show how by using this approach
we can adjust the optimal solution as more data becomes available, and by applying
Selective Sampling techniques we may further boost convergence rate.

Both our methods converge after a finite number of iterations. In principle, this
number may be exponential in the training set size, n. However , since parametric
QP methods are based on the well-known Simplex method for linear programming,
a similar behavior is expected: Though in theory the Simplex method is known
to have exponential complexity, in practice it hardly ever displays exponential
behavior. The per-iteration complexity is expected to be O(nl), where l is the
number of active points at that iteration, with the exception of some rare cases in
which the complexity is expected to be bounded by O(nl2).

2 Parametric QP for SVM

Any optimal solution to the 1-Norm Soft Margin SYM optimization problem must
satisfy the Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions:

1 exiSi = 0, i = 1, ... ,n
2 (c - exi)~i = 0, i = 1, . . . ,n

3

4

5

T

Y ex = 0,
-Qex + by + S - ~ = -e,

° ~ ex ~ c, S :::: 0, ~:::: 0.

(1)

2 A different incremental approach stems from a geometric interpretation of the primal
problem: Keerthi et al. [7] were the first to suggest a nearest point batch algorithm
and Kowalczyk [8] provided the on-line version. They handled the inseparable with the
well-known transformation W ~ (W, .;c~) and b ~ b, which establish the equivalence
between the Hard Margin and the 2-Norm Soft Margin optimization problems. Although
the i-Norm and the 2-Norm have been shown to yield equivalent generalization properties,
it is often observed (cf. [7]) that the former method results in a smaller number of SV. It
is obvious by the above transformation that the i-Norm Soft Margin is the most general
SVM optimization problem.

3The detailed statements of the algorithms and the supporting lemmas were omitted
due to space limitation, and can be found at [5].

where a E Rn is the vector of Lagrange multipliers, b is the bias (scalar) and sand
~ are the n-dimensional vectors of slack and surplus variables, respectively. Y is a
vector oflabels, ±1. Q is the label encoded kernel matrix, i.e. Qij = YiyjK(Xi,Xj),
e is the vector of all 1 's of length n and c is the penalty associated with errors.

If we assume that the value of the bias is fixed to some predefined value b, then
condition 3 disappears from the system (1) and condition 4 becomes

-Qa + S - ~ = -e - by (2)

Consider the following modified parametric system of KKT conditions

aiSi = 0, i = 1, ... ,n
(c - ai)~i = 0, i = 1, ... ,n
-Qa + S - ~ = p + u(-e - yb - p) ,

o ::::: a ::::: c, S ~ 0, ~ ~ 0,

(3)

for some vector p. It is easy to find p, a S and ~ satisfying (3) for u = O. For
example, one may pick a = 0, S = e, ~ = 0 and p = -Qa + s. For u = 1 the
systems (3) reduces to the fixed bias system. Our fixed bias method starts at a
solution to (3) for u = 0 and by increasing u while updating a, s and ~ so that they
satisfy (3), obtains the optimal solution for u = 1.

Similarly we can obtain solution to (1) by starting at a fixed bias solution and
update b, while maintaining a, s and ~ feasible for (2) , until the optimal value for
b is reached. The optimal value of the bias is recognized when the corresponding
solution satisfy (1), namely aT y = O.

Both these methods are based on the same framework of adjusting a scalar param­
eter in the right hand side of a KKT system. In the next section we will present
the method for adjusting the bias (adjusting u in (3) is very similar, save for a few
technical differences). An advantage of this special case is that it solves the original
problem and can, in principal, be applied "from scratch" .

3 Correcting a "Fixed Bias" Solution

Let (a(b), s(b), ~(b)) be a fixed bias solution for a given b. The algorithm that we
present here is based on increasing (or decreasing) b monotonically, until the optimal
b* is found, while updating and maintaining (a(b),s(b),~(b)).

Let us introduce some notation. For a given b and and a fixed bias solution,
(a(b), s(b), ~(b)), we partition the index set I = {I, ... , n} into three sets 10 (b),
Ie(b) and Is(b) in the following way: Vi E Io(b) si(b) > 0 and ai(b) = 0, Vi E Ie(b)
~i(b) > 0 and ai(b) = c and Vi E Is(b) si(b) = ~i(b) = 0 and 0::::: ai(b) ::::: c. It is easy
to see that Io(b)Ule(b)UIs(b) = I and Io(b)nle(b) = Ie(b)nIs(b) = Io(b)nIs(b) = 0.
We will call the partition (Io(b),Ie(b),Is(b)) - the optimal partition for a given b.
We will refer to Is as the active set. Based on partition (Io,Ie,Is) we define Qss
(Qes Qse Qee, Qos, Qoo) as the submatrix of Q whose columns are the columns
of Q indexed by the set Is (Ie, Is, Ie, 10 , 10) and whose rows are the rows of Q
indexed by Is (Is, Ie, Ie, Is , 10). We also define Ys (Ye, Yo) and as (ae , ao) and
the subvectors of Y and a whose entries are indexed by Is (Ie, 10). Byes (ee) we
denote a vector of all ones of the appropriate size.

Assume that we are given an initial guess4 bO < b*. To initiate the algorithm we

4Whether bO < b* can be determined by evaluating -y T a(bO): if -y T a(bO) > 0 then
bO < b*, otherwise bO > b*, in which case the algorithm is essentially the same, save for
obvious changes.

assume that we know the optimal partition (Ioo'!eo,Iso) = (Io(bO),!c(bO),!s(bO))
that corresponds to aO = a(bO). We know that Vi E 10 ai = 0 and Vi E Ie ai = c.
We also know that -Qia + Yib = -1, Vi E Is (here Qi is the i-th row of Q). We
can write the set of active constraints as

(4)

If Qss is nonsingular (the nondegenerate case), then as depends linearly on scalar
b. Similarly, we can express So and ~e as linear functions of b. If Q ss is singular
(the degenerate case), then, the set of all possible solutions as changes linearly with
b as long as the partition remains optimal. In either case, if 0 < as < c, So > 0
and ~e > 0 then sufficiently small changes in b preserve these constraints. At each
iteration b can increase until one of the four types of inequality constraints becomes
active. Then, the optimal partition is updated, new linear expressions of the active
variables through b are computed, and the algorithm iterates. We terminate when

T
Y a < 0, that is b > b*. The final iteration gives us the correct optimal active set
and optimal partition; from that we can easily compute b* and a*.

A geometric interpretation of the algorithmic steps suggest that we are trying to
move the separating hyperplane by increasing its bias and at the same time adjusting
its orientation so it stays optimal for the current bias. At each iteration we move
the hyperplane until either a support vector is dropped from the support set, a
support vector becomes violated, a violated point becomes a support vector or an
inactive point joins the support vector set.

The algorithm is guaranteed to terminate after finitely many iterations. At each
iteration the algorithm covers an interval that corresponds to an optimal partition.
The same partition cannot correspond to two different intervals and the number of
partitions is finite, hence so is the number of iterations (d. [1, 9]). Per-iteration
complexity depends on whether an iteration is degenerate or not. A nondegenerate
iteration takes O(niIs I) + O(IIs 13) arithmetic operations, while a degenerate iter­
ation should in theory take 0(n21Is 12) operations, but in practice it only takes5

0(nIIsI2). Note that the degeneracy occurs when the active support vectors are
linearly dependent. The larger is the rank of the kernel matrix the less likely is such
a situation. The storage requirement of the algorithm is O(n) + 0(IIsI2).

4 Incremental Algorithm

Incremental and on-line algorithms are aimed at training problems for which the
data becomes available in the course of training. Such an algorithm, when given
an optimal solution for a training set of size n, and additional m training points,
has to efficiently find the optimal solution to the extended n + m training set.

Assume we have an optimal solution (a, b, s,~) for a given data set X of size n.
For each new point that is added, we take the following actions: a new Lagrange
multiplier a n+l = 0 is added to the set of multipliers , then the distance to the
margin is evaluated for this point. If the point is not violated, that is if Sn+l =
W T xn+l_yn+1b_1 > 0, then the new positive slack Sn+l is added to the set of slack
variables. If the point is violated then sn+1 = 1 is added to the set of slack variables.
(Notice, that at this point the condition w T x n+1 + yn+1b + sn+1 = -1 is violated.)
A surplus variable ~n+l = 0 is also added to the set of surplus variables. The
optimal partition is adjusted accordingly. The process is repeated for all the points
that have to be added at the given step. If no violated points were encountered,

5This assumes solving such a problem by an interior point method

o
1

2

3

4

Given dataset <X,y>, asolution(oo , bo , so,~o) , and new points <x,y>~t~

S b t 0 1 b n+i (n+i)T et p = - e - y , On+i = <, n+i = , Sn+i = - - y + x w, i = 1, ... , m
n+i T

If Sn+i ::::: 0, Set pn+i := -(x) w + 1, Sn+i = 1

Else pn+i := -1 - byn+i

X := XU {xn+l , ... , xn+m}, y := (yl , ... , yn, yn+l , ... , yn+m)

If p #- - e - by
Call POKERfixedbias(X, y , 0 , b, s, ~ , p)

Call POKERadjustbias (X, y , 0, b, s, ~)

5 If there are more data points go to O.

Figure 1: Outline of the incremental algorithm (AltPOKER)

then no further action is necessary. The current solution is optimal and the bias
is unchanged. If at least one point is violated, then the new set (Q, b, s,~) is not
feasible for the KKT system (1) with the extended data set. However, it is easy to
find p such that (Q, b, s, ~) is optimal for (3). Thus we can first apply the fixed bias
algorithm to find a new solution and then apply the adjustable bias algorithm to
find the optimal solution to the new extended problem (see Figure 1).

In theory adding even one point may force the algorithm to work as hard as if
it were solving the problem "from scratch". But in practice it virtually never
happens. In our experiments, just a few iterations of the fixed bias and adjustable
bias algorithms were sufficient to find the solution to the extended problem. Overall ,
the computational complexity ofthe incremental algorithm is expected to be O(n2) .

5 Experiments

Convergence in Batch Mode: The most straight-forward way to activate
POKER in a batch mode is to construct the trivial partition6 and then apply the
adjustable bias algorithm to get the optimal solution. We term this method Self­
Init POKER. Note that the initial value of the bias is most likely far away from the
global solution, and as such, the results presented here should be regarded as a lower
bound. We examined performances on a moderate size problem, the Abalone data
set from the VCI Repository [2]. We fed the training algorithm with increasing sub­
sets up to the whole set (of size 4177). The gender encoding (male/female/infant)
was mapped into {(I,O,O),(O,I,O) ,(O,O,I)}. Then, the data was scaled to lie in the
[-1 ,1] interval. We demonstrate convergence for polynomial kernel with increasing
degree, which in this setting corresponds to level of difficulty. However naive our
implementation is, one can observe (see Figure 2) a linear convergence rate in the
batch mode.

Convergence in Incremental Mode: AltPOKER is the incremental algorithm
described in section 4. We examined the performance on the" diabetes" problem 7

that have been used by Cauwenberghs and Poggio in [3] to test the performance of
their algorithm. We demonstrate convergence for the RBF kernel with increasing
penalty ("C"). Figure 3 demonstrates the advantage of the more flexible approach

6Fixing the bias term to be large enough (positive or negative) and the Lagrange
multipliers to 0 or C based on their class (negative/positive) membership.

7 available at http://bach . ece.jhu. edu/pub/ gert/svm/increm ental

Selflnil POKER: No. ollleralions VS. Problem Size

16000 _ ,near erne

2000

_ POJyKemel:(<>:.y>+1r

• POJyKemel:(<>:.y>+1r

POJy Kemel:(<>:.y>+1t

POJyKemel:(<>:.y>+1r

ProblernSize

AUPOKER: No. ol lleralions VS. Chunk Size

2500'

Chunk Size

- C:O.l
C"l
C,,10
C,,25
C,,50
C,,75

- C"l00

Figure 2: SelfInit POKER - Convergence Figure 3: AltPOKER - Convergence in
in Batch mode Incremental mode

which allows various increment sizes: using increments of only one point resulted in
a performance of a similar scale as that of Cauwenberghs and Poggio, but with the
increase of the chunk sizes we observe rapid improvement in the convergence rate.

Selective Sampling: We can use the incremental algorithm even in case when all
the data is available in advance to improve the overall efficiency. If one can select
a good representative small subset of the data set, then one can use it for training,
hoping that the majority of the data points are classified correctly using the initial
sampled data8 . We applied selective sampling as a preprocess in incremental mode:
At each meta-iteration, we ranked the points according to a predefined selection
criterion, and then picked just the top ones for the increment.

The following selection criteria have been used in our experiments: CIs2W picks the
closest point to the current hyperplane. This approach is inspired by active learning
schemes which strive to halve the version space. However, the notion of a version
space is more complex when the problem is inseparable. Thus, it is reasonable to
adapt a greedy approach which selects the point that will cause the larger change
in the value of the objective function.

While solving the optimization problem for all possible increments is impracticable,
it may still worthwhile to approximate the potential change: MaxSlk picks the
most violating point. This corresponds to an upper bound estimate of the change
in the objective, since the value of the slack (times c) is an upper bound to the
feasibility gap. dObj perform only few iterations of the adjustable bias algorithm
and examine the change in the objective value. This is similar to Strong Branching
technique which is used in branch and bound methods for integer programming.
Here it provides a lower bound estimate to the change in the objective value.

Although performing only few iterations is much cheaper than converging to the
optimal solution, this technique is still more demanding then previous selection
methods. Hence we first ranked the points using CIs2W (MaxSlk) and then ap­
plied dObj only to the top few . Table 1 presents the application of the above
mentioned criteria to three different problems. The results clearly shows that ad­
vantage of using the information obtained by dObj estimate.

8This is different from a full-fledged Active Learning scheme in which the data is not
labeled, but rather queried at selected points.

Selection a· I Is I Ie I 10 a· I Is I Ie I 10 II a· I Is I Ie I 10
Criteria 400 I 4 I 11 I 9985 8 I 73 I 1 I 277 II 40 I 20 I 313 I 243

No Selection 234 871 3078
MaxSlk 112 303 3860
MaxSlk+dObj 92 269 3184
ClsW 128 433 2576
ClsW+dObj 116 407 2218

Table 1: The impact of Selective Sampling on the No. of iterations of AltPOKER:
Synthetic data (10Kx2), "ionosophere" [2] and "diabetes" (columns ordered resp.)

6 Conclusions and Discussion

We propose a new finitely convergent method that can be applied in both batch
and incremental modes to solve the 1-Norm Soft Margin SVM problem. Assuming
that the number of support vectors is small compared to the size of the data, the
method is expected to perform O(n2) arithmetic operations, where n is the problem
size. Applying Selective Sampling techniques may further boost convergence and
reduce computation load.

Our method is independently developed, but somewhat similar to that in [3]. Our
method, however, is more general - it can be applied to solve fixed bias problems
as well as obtain optimal bias from a given fixed bias solution; It is not restricted
to increments of size one, but rather can handle increments of arbitrary size; And,
it can be used to get an estimate of the drop in the value of the objective function ,
which is a useful selective sampling criterion.

Finally, it is possible to extend this method to produce a true on-line algorithm, by
assuming certain properties of the data. This re-introduces some very important
applications of the on-line technology, such as active learning, and various forms
of adaptation. Pursuing this direction with a special emphasis on massive data
applications (e.g. speech related applications), is left for further study.

References

[1] A. B. Berkelaar, B. Jansen, K. Roos, and T. Terlaky. Sensitivity analysis in (degener­
ate) quadratic programming. Technical Report 96-26, Delft University, 1996.

[2] C. L. Blake and C. J Merz. UCI repository of machine learning databases, 1998.

[3] G. Cauwenberghs and T . Poggio. Incremental and decremental support vector machine
learning. In Adv. in Neural Information Processing Systems 13, pages 409- 415, 2001.

[4] N. Cristianini and J. Shawe-Taylor. An Introductin to Support Vector Macines and
Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

[5] S. Fine and K. Scheinberg. Poker: Parametric optimization framework for kernel
methods. Technical report , IBM T. J. Watson Research Center, 2001. Submitted.

[6] T. T. Friess, N. Cristianini, and C. Campbell. The kernel-adaraton algorithm: A fast
simple learning procedure for SVM. In Pmc. of 15th ICML, pages 188- 196, 1998.

[7] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iterative
nearest point algorithm for SVM classifier design . IEEE Trnas . NN, 11:124- 36, 2000.

[8] A. Kowalczyk. Maximal margin perceptron. In Advances in Large Margin Classifiers ,
pages 75-113. MIT Press, 2000.

[9] R. T. Rockafellar. Conjugate Duality and Optimization. SIAM, Philadelphia, 1974.

