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Abstract

Asymmetric lateral connections are one possible mechanism that can ac-
count for the direction selectivity of cortical neurons. We present a math-
ematical analysis for a class of these models. Contrasting with earlier
theoretical work that has relied on methods from linear systems theory,
we study the network’s nonlinear dynamic properties that arise when the
threshold nonlinearity of the neurons is taken into account. We show
that such networks have stimulus-locked traveling pulse solutions that
are appropriate for modeling the responses of direction selective cortical
neurons. In addition, our analysis shows that outside a certain regime
of stimulus speeds the stability of this solutions breaks down giving rise
to another class of solutions that are characterized by specific spatio-
temporal periodicity. This predicts that if direction selectivity in the cor-
tex is mainly achieved by asymmetric lateral connections lurching activ-
ity waves might be observable in ensembles of direction selective cortical
neurons within appropriate regimes of the stimulus speed.

1 Introduction

Classical models for the direction selectivity in the primary visual cortex have assumed
feed-forward mechanisms, like multiplication or gating of afferent thalamo-cortical inputs
(e.g. [1, 2, 3]), or linear spatio-temporal filtering followed by a nonlinear operation (e.g.
[4, 5]). The existence of strong lateral connectivity has motivated modeling studies, which
have shown that the properties of direction selective cortical neurons can also be accurately
reproduced by recurrent neural network models with asymmetric lateral excitatory or in-
hibitory connections [6, 7]. Since these biophysically detailed models are not accessible
for mathematical analysis, more simplified models appropriate for a mathematical analysis
have been proposed. Such analysis was based on methods from linear systems theory by
neglecting the nonlinear properties of the neurons [6, 8, 9]. The nonlinear dynamic phe-
nomena resulting from the interplay between the recurrent connectivity and the nonlinear



threshold characteristics of the neurons have not been tractable in this theoretical frame-
work.

In this paper we present a mathematical analysis that takes the nonlinear behavior of the
individual neurons into account. We present the result of the analysis of such networks
for two types of threshold nonlinearities, for which closed-form analytical solutions of the
network dynamics can be derived. We show that such nonlinear networks have a class of
form-stable solutions, in the following signified as stimulus-locked traveling pulses, which
are suitable for modeling the activity of direction selective neurons. Contrary to networks
with linear neurons, the stability of the traveling pulse solutions in the nonlinear network
can break down giving raise to another class of solutions (lurching activity waves) that is
characterized by spatio-temporal periodicity. Our mathematical analysis and simulations
showed that recurrent models with biologically realistic degrees of direction selectivity
typically also show transitions between traveling pulse and lurching solutions.

2 Basic mod€

Dynamic neural fields have been proposed to model the average behavior of a large ensem-
bles of neurons [10, 11, 12]. The scalar neural activity distribution u(x, t) characterizes the
average activity at time ¢ of an ensemble of functionally similar neurons that code for the
position z, where z can be any abstract stimulus parameter. By the continuous approxi-
mation of biophysically discrete neuronal dynamics it is in some cases possible to treat the
nonlinear neural dynamics analytically.

The field dynamics of neural activation variable u(z, t) is described by:
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This dynamics is essentially a leaky integrator with a total input on the right hand side,
which includes a feedfoward input term b(x,t) and a feedback term that integrates the
recurrent contributions from other laterally connected neurons. The interaction kernel
w(z — z') characterizes the average synaptic connection strength between the neurons
coding position z' and the neurons coding position z. f is the activation function of the
neurons. This function is nonlinear and monotonically increasing, and introduces the non-
linearity that makes it difficult to analyze the network dynamics.

With a moving stimulus at constant velocity v, it is often convenient to transform the static
coordinate to the moving frame by changing variable £ = x — vt. Under the new frame,
the stimulus is stationary. Let U (¢, t) = u(z — vt, t). The dynamics for U reads
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A stationary solution in the moving frame has to satisfy the following equation:
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U* (&) corresponds to a traveling pulse solution with velocity v in the original static coor-
dinate. Therefore the traveling pulse solution driven by the moving stimulus can be found
by solving Eq. (3), and the stability of the traveling pulse can be studied by perturbing the
stationary solution in Eq. (2).

The neural field dynamics Eq. (2) is a nonlinear integro-differential equation. In most
cases an analytic treatment of such equations is impossible. In this paper, we consider
two biologically inspired special cases, which can be analytically solved. For this purpose
we consider only one-dimensional neural fields and assume that the nonlinear activation
function f is either a step function or a linear threshold function.



3 Step activation function

We first consider step activation function f(z) = ©(z) where ©(z) = 1 when z > 0 and
zero otherwise. This form of activation function approximates activities of neurons, which,
by saturation, are either active or inactive. For the one-dimensional case, we assume that
only a single stationary excited regime with (U*(£) > 0)exists that is located between the
points (£F,£3). Only neurons inside this regime contribute to the integral, and accordingly
Eq. (3) can be simplified following [11]. The spatial shape U*(&) of the stationary solution
obeys the ordinary differential equation

au*(¢)
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where W (z) = foz w(z)dz. The solution of the above equation can be found by treating
the boundaries £ and & as fixed parameters, and solving Eqg. (4).
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To facilitate notation we define an integral operator O with parameter o # 0 as
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where 2z = —oo for a < 0 and zp = +oo otherwise. Using this operator we define the
two functions

F(z) = O[W(z2);Tv]/(—7mv) and B(z) = O[b(z);1v]/(—1v).
The solution of Eq. (4) can be written with these functions in the form

Ur(§) = F(E - &) — F(E - &) + B(&)- (6)

For the boundary points U*(£}) = U*(&) = 0 must be satisfied, leading to the transcen-
dent equation system
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from which &5 and & can be determined.

3.1 Stability of the traveling pulse solution

The stability of the traveling pulse solution can be analyzed by perturbing the stationary
solution in the moving coordinate system. Let U (&, t) be a small perturbation of U*(¢).
The linearized perturbation dynamics reads
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where §¢; (i = 1, 2) are the perturbations of the boundary points of the exited regime from
the stationary values of £ with U (& + d&;,t) = 0. However, §¢; is not independent of
oU (&, t), and the dependence can be found by noting that

U (&, t)

U(&i,t) =U(& + 66, t) =U(&, 1) + 75& +0(8€7) = 0.

Since U (&f,t) = 0U(&f, ) to the first order we have §¢; = —dU (&f,t)/cF, where ¢ =
dU*(&;)/d€. Substituting this back into the perturbed dynamics, we have
05U ooU
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Substitute solution of the form 6U (¢,t) = €Y (£) into the above dynamics. After some
calculation, the eigenvalue equation for A reads

[G(0) =i (1 + 7A][G(0) + c5(1+7A)] = G(& = &, MVG(& —&1,A),  (10)
where function G(-) is defined as

G(z,A) = Olw(z);Tv/(1 + 7N)](1 + 7N) /(—Tv).

From the transcendent Eq. (10), A can be found. The traveling pulse solution is asymptoti-
cally stable only if the real parts of all eigenvalues A are negative.

3.2 Simulation results of step activation function model

We use the following function
w(z) = ae exp(—ke|z — z0|) — a; exp(—ki|z — zo|)

as an example interaction kernel, numerically simulate the dynamics and compare the sim-
ulation results with the above mathematical analysis. The stimulus used is a moving bar
with constant width and amplitude. The results are shown in the left (a-€) panels of Fig. (1).
Panel (a) shows the speed tuning curve plotted as the dependence of the peak activity of the
traveling pulse as function of the stimulus velocity v. The solid lines indicate the results
from the numerical simulation and the dotted lines represent results from the analytical so-
lution. Panel (b) shows the maximum real part of the eigenvalues obtained from Eqg. (10).
For small and large stimulus velocities maximum of the real parts of A becomes positive
indicating a loss of stability of the form-stable solution. To verify this result we calculated
the variability of the peak activity over time in simulation. Panel (c) shows the average
variability as function of the stimulus velocity. At the velocities for which the eigenvalues
indicate a loss of stability the variability of the amplitudes suddenly increases, consistent
with our interpretation as a loss of the form stability of the solution.

An interesting observation is illustrated in panels (d) and (e) that show a color-coded plot of
the space-time evolution of the activity. Panel (e) shows the propagation of the form-stable
traveling pulse. Panel (d) shows the solution that arises when stability is lost. This solution
is characterized by a spatio-temporal periodicity that is defined in the moving coordinate
system by U(y + mLg,t + nTy) = U(y,t), where Lo and Ty are constants that depend
on the network dynamics. Solutions of similar type have been described before in spiking
networks [13].

4 Linear threshold activation function

In this case, the activation function is taken to be f(z) = [2]T = max{z,0}. Cortical
neurons typically operate far below the saturation level. The linear threshold activation
function is thus more suitable to capture the properties of real neurons while still permitting
a relatively simple theoretical analysis. We consider a ring network with periodic boundary
conditions. The dynamics is given by

m I +
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This network can be shown equivalent to the the standard one in Eq. (1) by changing vari-
ables and transforming stimulus. We chose this form because it simplifies the mathematical
analysis of ring networks. Again, we consider a moving stimulus with velocity v and ana-
lyze the network in the moving frame.



4.1 General solutions and stability analysis

Because the activation function has linear threshold characteristics, inside the excited
regime for which the total input (u(6,t) > 0) is positive the system is linear. One ap-
proach to solve this dynamics is therefore to find the solutions to the differential equation
assuming the boundaries of the excited regime are given. The conditions at the bound-
aries lead to a set of self-consistent equations for the solutions to satisfy, from which the
boundaries can be determined.

By denoting activities in moving coordinates as M (8 — vt, t) = m(8,t), the dynamics can
be written as:
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Supposing the excited regime is 6 € (6, (t),6=2(t)), we solve the dynamics by Fourier trans-
forming the above equation in the spatial domain [—, 7). Let
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where k, = 0, +1, ... is the frequency. The stationary solution in moving coordinates can

then be written as )
m* = (I +irvK —C)™'b, (12)

where matrix K is defined as the diagonal matrix K = diag(k,). The components of the

vector ti are i, and those of b are b,,. The above solution has to satisfy two boundary
conditions, from which 6; and 6 can be determined.

Stability of this traveling pulse solution can be analyzed by linear perturbation. Note that
perturbed boundaries points do not contribute to the linearized perturbed dynamics since
08;u*(0;) = 0(i = 1,2),where »*(6) is the total input at the stationary solution of the
moving frame on right hand side of Eq. (11). Therefore, the linearized perturbation dy-
namics can be fully characterized by the perturbed Fourier modes with fixed boundaries.
Hence, the stability of the traveling pulse solution is determined by the eigenvalues of ma-
trix A = —(I +i7vK — C). If the largest real part of eigenvalues of A is negative, then
the stimulus locking traveling pulse is stable.

4.2 Simplified linear threshold network

The general solution introduced above requires the solution of an equation system. In
practice, the Fourier series have to be truncated in order to obtain a finite number of Fourier
components at the expense of an approximation error. Next we consider a special simple
model for which an exact solution can be found that contains only two Fourier components
for the interaction kernel w and the input 5. For this model a closed form solution and
stability analysis is presented, that at the same time provides insight in some rather general
properties of linear threshold networks.

The interaction kernel and feedforward input are assumed to have the following form:
w(B) = Jo + Jy cos( + ) b(#) = Cy — C4 cos(8) (13)

This network was used by Hansel and Sompolinsky as model of cortical orientation se-
lectivity [14]. However different from their network, we consider here an asymmetric
interaction kernel w(6) and a form-constant moving stimulus b(8 — vt).



Since the interaction kernel w and input b only involve first two Fourier components, the
dynamics can be fully determined in terms of its order parameters defined by

)= [ b @ )= / B (@' e (14)
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where phase variable W is to restrict r; (¢) to being real. In terms of these two order param-
eters plus the phase variable, the stimulus-locked traveling pulse solution and its stability
conditions can be expressed analytically. Due to space limitation, the detailed derivations
are omitted here. We show the theoretical results in right five panels of Fig. (1) and compare
them with numerical simulations.

Similar to the results of step function model, panel (A) shows the speed tuning curve plotted
as values of order parameters o and r; as function of different stimulus velocities v. Panel
(B) shows the largest real part of the eigenvalues of a stability matrix that can be obtained by
linearizing the order parameter dynamics around the stationary solution. Panel (C) shows
the average variations as function of the stimulus velocity. The space-time evolution of
the form-stable traveling pulse is shown in panel (E); the form-unstable lurching wave is
shown in panel (D). Thus we found that lurching wave solution type arises very robustly for
both types of threshold functions when the network achieved substantial direction selective
behavior.

5 Conclusion

We have presented different methods for an analysis of the nonlinear dynamics of simple
recurrent neural models for the direction selectivity of cortical neurons. Compared to ear-
lier works, we have taken into account the essentially nonlinear effects that are introduced
by the nonlinear threshold characteristics of the cortical neurons. The key result of our
work is that such networks have a class of form-stable traveling pulse solutions that behave
similar as the solutions of linear spatio-temporal filtering models within a certain regime
of stimulus speeds. By the essential nonlinearity of the network, however, bifurcations can
arise for which the traveling pulse solutions become unstable. We observed that in this
case a new class of spatio-temporally periodic solutions (”lurching activity waves”) arises.
Since we found this solution type very frequently for networks with substantial direction
selectivity our analysis predicts that such ”lurching behavior” might be observable in visual
cortex areas if, in fact, the direction selectivity is essentially based on asymmetric lateral
connectivity.
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