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Abstract 

Since the discovery that the best error-correcting decoding algo­
rithm can be viewed as belief propagation in a cycle-bound graph, 
researchers have been trying to determine under what circum­
stances "loopy belief propagation" is effective for probabilistic infer­
ence. Despite several theoretical advances in our understanding of 
loopy belief propagation, to our knowledge, the only problem that 
has been solved using loopy belief propagation is error-correcting 
decoding on Gaussian channels. We propose a new representation 
for the two-dimensional phase unwrapping problem, and we show 
that loopy belief propagation produces results that are superior to 
existing techniques. This is an important result, since many imag­
ing techniques, including magnetic resonance imaging and interfer­
ometric synthetic aperture radar, produce phase-wrapped images. 
Interestingly, the graph that we use has a very large number of 
very short cycles, supporting evidence that a large minimum cycle 
length is not needed for excellent results using belief propagation. 

1 Introduction 
Phase unwrapping is an easily stated, fundamental problem in image processing 
(Ghiglia and Pritt 1998). Each real-valued observation on a 1- or 2-dimensional 
grid is measured modulus a known wavelength, which we take to be 1 without loss 
of generality. Fig. Ib shows the wrapped, I-dimensional waveform obtained from the 
original waveform shown in Fig. la. Every time the original waveform goes above 1 
or below 0, it is wrapped to 0 or 1, respectively. The goal of phase unwrapping is to 
infer the original, unwrapped curve from the wrapped measurements , using using 
knowledge about which signals are more probable a priori. 

In two dimensions, exact phase unwrapping is exponentially more difficult than 1-
dimensional phase unwrapping and has been shown to be NP-hard in general (Chen 
and Zebker 2000). Fig. lc shows the wrapped output of a magnetic resonance 
imaging device, courtesy of Z.-P. Liang. Notice the "fringe lines" - boundaries 
across which wrappings have occurred. Fig. Id shows the wrapped terrain height 
measurements from an interferometric synthetic aperture radar, courtesy of Sandia 
National Laboratories, New Mexico. 
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Figure 1: (a) A waveform measured on a 1-dimensional grid. (b) The phase-wrapped version 
ofthe waveform in (a), where the wavelength is 1. (c) A wrapped intensity ma p from a magnetic 
resonance imaging device, measured on a 2-dimensional grid (courtesy of Z.-P. Liang). (d) 
A wrapped topographic map measured on a 2-dimensional grid (courtesy of Sandia National 
Laboratories, New Mexico) . 

A sensible goal in phase unwrapping is to infer the gradient field of the original 
surface. The surface can then be reconstructed by integration. Equivalently, the 
goal is to infer the number of relative wrappings, or integer "shifts", between every 
pair of neighboring measurements. Positive shifts correspond to an increase in the 
number of wrappings in the direction of the x or y coordinate, whereas negative 
shifts correspond to a decrease in the number of wrappings in the direction of the 
x or y coordinate. After arbitrarily assigning an absolute number of wrappings to 
one point, the absolute number of wrappings at any other point can be determined 
by summing the shifts along a path connecting the two points. To account for 
direction, when taking a step against the direction of the coordinate, the shift 
should be subtracted. 

When neighboring measurements are more likely closer together than farther apart 
a priori, I-dimensional waveforms can be unwrapped optimally in time that is linear 
in the waveform length. For every pair of neighboring measurements, the shift that 
makes the unwrapped values as close together as possible is chosen. For example, 
the shift between 0.4 and 0.5 would be 0, whereas the shift between 0.9 and 0.0 
would be -1. 

For 2-dimensional surfaces and images, there are many possible I-dimensional paths 
between any two points. These paths should be examined in combination, since the 
sum of the shifts along every such path should be equal. Viewing the shifts as state 
variables, the cut-set between any two points is exponential in the size of the grid, 
making exact inference for general priors NP-hard (Chen and Zebker 2000). 

The two leading fully-automated techniques for phase unwrapping are the least 
squares method and the branch cut technique (Ghiglia and Pritt 1998). (Some other 
techniques perform better in some circumstances, but need additional information 
or require hand-tweaking.) The least squares method begins by making a greedy 
guess at the gradient between every pair of neighboring points. The resulting vector 



field is not the gradient field of a surface, since in a valid gradient field, the sum of 
the gradients around every closed loop must be zero (that is, the curl must be 0). 
For example, the 2 x 2 loop of measurements 0.0, 0.3, 0.6, 0.9 will lead to gradients of 
0.3,0.3,0.3, 0.1 around the loop, which do not sum to O. The least squares method 
proceeds by projecting the vector field onto the linear subspace of gradient fields. 
The result is integrated to produce the surface. The branch cut technique also 
begins with greedy decisions for the gradients and then identifies untrustworthy 
regions of the image whose gradients should not be used during integration. As 
shown in our results section, both of these techniques are suboptimal. 

Previously, we attempted to use a relaxed mean field technique to solve this problem 
(Achan, Frey and Koetter 2001). Here, we take a new approach that works better 
and is motivated by the impressive results of belief propagation in cycle-bound 
graphs for error-correcting decoding (Wiberg, Loeliger and Koetter 1995; MacKay 
and Neal 1995; Frey and Kschischang 1996; Kschischang and Frey 1998; McEliece, 
MacKay and Cheng 1998). In contrast to other work (Ghiglia and Pritt 1998; 
Chen and Zebker 2000; Koetter et al . 2001), we introduce a new framework for 
quantitative evaluation, which impressively places belief propagation much closer 
to the theoretical limit than other leading methods. 

It is well-known that belief propagation (a.k.a. the sum-product algorithm, prob­
ability propagation) is exact in graphs that are trees (Pearl 1988), but it has been 
discovered only recently that it can produce excellent results in graphs with many 
cycles. Impressive results have been obtained using loopy belief propagation for 
super-resolution (Freeman and Pasztor 1999) and for infering layered representa­
tions of scenes (Frey 2000) . However, despite several theoretical advances in our 
understanding of loopy belief propagation (c.f. (Weiss and Freeman 2001)) and pro­
posals for modifications to the algorithm (c.f. (Yedidia, Freeman and Weiss 2001)) , 
to our knowledge, the only problem that has been solved by loopy belief propagation 
is error-correcting decoding on Gaussian channels. 

We conjecture that although phase unwrapping is generally NP-hard, there exists a 
near-optimal phase unwrapping algorithm for Gaussian process priors. Further, we 
believe that algorithm to be loopy belief propagation. 

2 Loopy Belief Propagation for Phase Unwrapping 

As described above, the goal is to infer the number of relative wrappings, or integer 
"shifts" , between every pair of neighboring measurements. Denote the x-direction 
shift at (x,y) by a(x , y) and the y-direction shift at (x , y) by b(x , y), as shown in 
Fig.2a. If the sum of the shifts around every short loop of 4 shifts (e.g., a(x,y) + 
b(x + l,y) - a(x , y + 1) - b(x,y) in Fig. 2a) is zero, then perturbing a path will 
not change the sum of the shifts along the path. So, a valid set of shifts S = 
{a(x,y) , b(x , y) : x = 1, ... , N -1;y = 1, .. . , M -I} in an N x M image must 
satisfy the constraint 

a(x,y) + b(x + l,y) - a(x,y + 1) - b(x,y) = 0, (1) 

for x = 1, ... , N -1, Y = 1, ... , M -1. Since a(x, y) +b(x+ 1, y) -a(x, y+ 1) -b(x, y) 
is a measure of curl at (x, y), we refer to (1) as a "zero-curl constraint", reflecting 
the fact that the curl of a gradient field is O. In this way, phase unwrapping is 
formulated as the problem of inferring the most probable set of shifts subject to 
satisfying all zero-curl constraints. 

We assume that given the set of shifts, the unwrapped surface is described by a low­
order Gaussian process. The joint distribution over the shifts S = {a(x, y), b(x, y) : 
x = 1, ... , N - 1; Y = 1, ... , M - I} and the wrapped measurements <I> = {¢(x, y) : 
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Figure 2: (a) Positive x-direction shifts (arrows labeled a) and positive y-direction shifts 
(arrows labeled b) between neighboring measurements in a 2 X 2 patch of points (marked by 
X 's) , (b) A graphical model that describes the zero-curl constraints (black discs) between 
neighboring shift variables (white discs), 3-element probability vectors (J-L 's) on the relative 
shifts between neighboring variables (-1, 0, or +1) are propagated across the network: (c) 
Constraint-to-shift vectors are computed from incoming shift-to-constraint vectors; (d) Shift­
to-constraint vectors are computed from incoming constraint-to-shift vectors; (d) Estimates of 
the marginal probabilities of the shifts given the data are computed by combining incoming 
constra i nt-to-sh ift vectors, 

0 :::; r/J(x, y) < 1, x = 1, .. . , N; y = 1, . . . , M } can be expressed in the form 

N - l M - l 

P(S , <I» ex: II II 5(a(x,y) +b(x +1 ,y) - a(x,y +1 ) -b(x,y)) 
x=l y=l 

N-l M N M-l . II II e-(c/>(x+l,y)-c/>(x,y)-a(x,y))2/2u2 II II e-(C/>(x,y+1)-c/>(x,y)-b(x,y))2/2u2 . (2) 

x= l y=l x= l y=l 

The zero-curl constraints are enforced by 5 (.), which evaluates to 1 if its argument is 
o and evaluates to 0 otherwise. We assume t he slope of the surface is limited so that 
the unknown shifts take on the values -1, 0 and 1. a 2 is the variance between two 
neighboring measurements in the unwrapped image, but we find t hat in practice it 
can be estimated directly from t he wrapped image. 

Phase unwrapping consists of making inferences about the a's and b's in the above 
probability model. For example, the marginal probability t hat t he x-direction shift 
at (x,y) is k given an observed wrapped image <I> , is 

P (a(x,y) = kl<I» ex: L P(S , <I» . (3) 
S:a(x ,y)=k 

For an N x M grid, the above sum has roughly 32N M terms and so exact inference 
is intractable. 

The factorization of the joint distribution in (2) can be described by a graphical 
model, as shown in Fig. 2b. In this graph , each white disc sits on the border between 
two measurements (marked by x's), and corresponds to eit her an x-direction shift 
(a's ) or a y-direction shift (b's) . Each black disc corresponds to a zero-curl constraint 
(5(·) in (2)), and is connected to the 4 shifts t hat it constrains to sum to O. 

P robability propagation computes messages (3-vectors denoted by J-L) which are 
passed in both directions on every edge in t he network. The elements of each 3-
vector correspond to the allowed values of the neighboring shift, -1, 0 and 1. Each 
of these 3-vectors can be thought of as a probability distribut ion over the 3 possible 
values that the shift can take on. 



Each element in a constraint-to-shift message summarizes the evidence from the 
other 3 shifts involved in the constraint, and is computed by averaging the allowed 
configurations of evidence from the other 3 shifts in the constraint. For example, if 
ILl ' IL2 and IL3 are 3-vectors entering a constraint as shown in Fig. 2c, the outgoing 
3-vector, IL4' is computed using 

1 1 

f.t4i = L L L J(k + l- i - j)f.tljf.t2kf.t31, (4) 
j=-l k=-ll=-l 

and then normalized for numerical stability. The other 3 messages produced at the 
constraint are computed in a similar fashion . 

Shift-to-constraint messages are computed by weighting incoming constraint-to-shift 
messages with the likelihood for the shift. For example, if ILl is a 3-vector entering 
an x-direction shift as shown in Fig. 2d, the outgoing 3-vector, IL2 is computed using 

(5) 

and then normalized. Messages produced by y-direction shifts are computed in a 
similar fashion. 

At any step in the message-passing process, the messages on the edges connected 
to a shift variable can be combined to produce an approximation to the marginal 
probability for that shift, given the observations. For example, if ILl and IL2 are the 
3-vectors entering an x-direction shift as shown in Fig. 2e, the approximation is 

P(a(x ,y) = il<I» = (f.tlif.t2i)/(Lf.tljf.t2j). 
j 

(6) 

Given a wrapped image, the variance a 2 is estimated directly from the wrapped 
image, the probability vectors are initialized to uniform distributions, and then 
probability vectors are propagated across the graph in an iterative fashion. Different 
message-passing schedules are possible, ranging from fully parallel , to a "forward­
backward-up-down" -type schedule, in which messages are passed across the network 
to the right, then to the left , then up and then down. For an N x M grid, each 
iteration takes O(N M) scalar computations. 

After probability propagation converges (or, after a fixed number of iterations), 
estimates of the marginal probabilities of the shifts given the data are computed, and 
the most probable value of each shift variable is selected. The resulting configuration 
of the shifts can then be integrated to obtain the unwrapped surface. If some 
zero-curl constraints remain violated, a robust integration technique, such as least 
squares integration (Ghiglia and Pritt 1998), should be used. 

3 Experimental results 
Generally, belief propagation in cycle-bound graphs is not guaranteed to converge. 
Even if it does converge, the approximate marginals may not be close to the true 
marginals. So, the algorithm must be verified by experiments. 

On surfaces drawn from Gaussian process priors, we find that the belief propagation 
algorithm produces significantly lower reconstruction errors than the least squares 
method and the branch cut technique. 

Here, we focus on the performances of the algorithms for real data recorded from a 
synthetic aperture radar device (Fig. 1d) . Since our algorithm assumes the surface 
is Gaussian given the shifts, a valid concern is that it will not perform well when 
the Gaussian process prior is incorrect. 
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Figure 3: (a) After 10 iterations of belief propagation using the phase-wrapped surface from 
Fig. Id, hard decisions were made for the shift variables and the resulting shifts were integrated 
to produce this unwrapped surface. (b) Reconstruction error versus wrapping wavelength for 
our technique, the least squares method and the branch cuts technique . 

Fig. 3a shows the surface that is obtained by setting (/2 to the mean squared dif­
ference between neighboring wrapped values, applying 10 iterations of belief prop­
agation, making hard decisions for the integer shifts, and integrating the resulting 
gradients. Since this is real data, we do not know the "ground truth" . However, 
compared to the least squares method, our algorithm preserves more detail. The 
branch cut technique is not able to unwrap the entire surface. 

To obtain quantitative results on reconstruction error, we use the surface produced 
by the least squares method as the "ground truth" . To determine the effect of wrap­
ping wavelength on algorithm performance, we rewrap this surface using different 
wavelengths. For each wavelength, we compute the reconstruction error for belief 
propagation, least squares and branch cuts. Note that by using least squares to 
obtain the ground truth, we may be biasing our results in favor of least squares. 

Fig. 3b shows the logarithm of the mean squared error in the gradient field of the 
reconstructed surface as a function of the wrapping wavelength, >., on a log-scale. 
(The plot for the mean squared error in the surface heights looks similar.) As >. -+ 0, 
unwrapping becomes impossible and as >. -+ 00, unwrapping becomes trivial (since 
no wrappings occur), so algorithms have waterfall-shaped curves. 



The belief propagation algorithm clearly obtains significantly lower reconstruction 
errors. Viewed another way, belief propagation can tolerate much lower wrapping 
wavelengths for a given reconstruction error. Also, it turns out that for this surface, 
it is impossible for an algorithm that infers relative shifts of -1,0 and 1 to obtain a 
reconstruction error of 0, unless A ::::: 12.97. Belief propagation obtains a zero-error 
wavelength that is significantly closer to this limit than the least squares method 
and the branch cuts technique. 

4 Conclusions 
Phase unwrapping is a fundamental problem in image processing and although it 
has been shown to be NP-hard for general priors (Chen and Zebker 2000), we 
conjecture there exists a near-optimal phase unwrapping algorithm for Gaussian 
process priors. Further, we believe that algorithm to be loopy belief propagation. 
Our experimental results show that loopy belief propagation obtains significantly 
lower reconstruction errors compared to the least squares method and the branch 
cuts technique (Ghiglia and Pritt 1998) , and performs close to the theoretical limit 
for techniques that infer relative wrappings of -1, 0 and + 1. The belief propagation 
algorithm runs in about the same time as the other techniques. 
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