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Abstract 

Maximum margin classifiers such as Support Vector Machines 
(SVMs) critically depends upon the convex hulls of the training 
samples of each class, as they implicitly search for the minimum 
distance between the convex hulls . We propose Extrapolated Vec­
tor Machines (XVMs) which rely on extrapolations outside these 
convex hulls. XVMs improve SVM generalization very significantly 
on the MNIST [7] OCR data. They share similarities with the 
Fisher discriminant: maximize the inter-class margin while mini­
mizing the intra-class disparity. 

1 Introduction 

Both intuition and theory [9] seem to support that the best linear separation be­
tween two classes is the one that maximizes the margin. But is this always true? 
In the example shown in Fig.(l), the maximum margin hyperplane is Wo; however , 
most observers would say that the separating hyperplane WI has better chances to 
generalize, as it takes into account the expected location of additional training sam-
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Figure 1: Example of separation where the large margin is undesirable. The convex 
hull and the separation that corresponds to the standard SVM use plain lines while 
the extrapolated convex hulls and XVMs use dotted lines. 



pIes. Traditionally, to take this into account, one would estimate the distribution of 
the data. In this paper, we just use a very elementary form of extrapolation ("the 
poor man variance") and show that it can be implemented into a new extension to 
SVMs that we call Extrapolated Vector Machines (XVMs). 

2 Adding Extrapolation to Maximum Margin Constraints 

This section states extrapolation as a constrained optimization problem and com­
putes a simpler dual form. 

Take two classes C+ and C_ with Y+ = +1 and Y_ = -1 1 as respective targets. 
The N training samples {(Xi, Yi); 1 ::::; i ::::; N} are separated with a margin p if there 
exists a set of weights W such that Ilwll = 1 and 

Vk E {+, -}, Vi E Ck, Yk(w,xi+b) 2: p (1) 

SVMs offer techniques to find the weights W which maximize the margin p. Now, 
instead of imposing the margin constraint on each training point, suppose that for 
two points in the same class Ck, we require any possible extrapolation within a 
range factor 17k 2: 0 to be larger than the margin: 

Vi,j E Ck, V)" E [-17k, l+17k], Yk (W.()"Xi + (l-)")Xj) + b) 2: P (2) 

It is sufficient to enforce the constraints at the end of the extrapolation segments, 
and 

(3) 

Keeping the constraint over each pair of points would result in N 2 Lagrange multi­
pliers. But we can reduce it to a double constraint applied to each single point. If 
follows from Eq.(3) that: 

(4) 

(5) 

We consider J.Lk = max (Yk(W.Xj)) and Vk = min (Yk(W.Xj)) as optimization vari-
lEC. lEC. 

abIes. By adding Eq.(4) and (5), the margin becomes 

2p = L ((17k+ 1)vk - 17kJ.Lk) = L (Vk -17dJ.Lk - Vk)) (6) 
k k 

Our problem is to maximize the margin under the double constraint: 

Vi E Ck, Vk ::::; Yk(W.Xi) ::::; J.Lk 

In other words, the extrapolated margin maximization is equivalent to squeezing 
the points belonging to a given class between two hyperplanes. Eq.(6) shows that 
p is maximized when Vk is maximized while J.Lk - Vk is minimized. 

Maximizing the margin over J.Lk , Vk and W with Lagrangian techniques gives us the 
following dual problem: 

(7) 

lIn this paper, it is necessary to index the outputs y with the class k rather than 
the more traditional sample index i, as extrapolation constraints require two examples to 
belong to the same class. The resulting equations are more concise, but harder to read. 



Compared to the standard SVM formulation, we have two sets of support vectors. 
Moreover , the Lagrange multipliers that we chose are normalized differently from 
the traditional SVM multipliers (note that this is one possible choice of notation, 
see Section.6 for an alternative choice). They sum to 1 and allow and interesting 
geometric interpretation developed in the next section. 

3 Geometric Interpretation and Iterative Algorithm 

For each class k, we define the nearest point to the other class convex hull along 
the direction of w: Nk = I:iECk f3iXi. Nk is a combination of the internal sup­
port vectors that belong to class k with f3i > O. At the minimum of (7), because 
they correspond to non zero Lagrange multipliers, they fallon the internal margin 
Yk(W,Xi) = Vk; therefore, we obtain Vk = Ykw.Nk· 

Similarly, we define the furthest point Fk = I:i ECk ~i Xi' Fk is a combination of the 
external support vectors, and we have flk = Ykw.Fk. 

The dual problem is equivalent to the distance minimization problem 

min IILYk ((1Jk+I)Nk _1Jk F k)11
2 

Nk ,Fk EHk k 

where 1{k is the convex hull containing the examples of class k. 

It is possible to solve this optimization problem using an iterative Extrapolated 
Convex Hull Distance Minimization (XCHDM) algorithm. It is an extension of the 
Nearest Point [5] or Maximal Margin Percept ron [6] algorithms. An interesting 
geometric interpretation is also offered in [3]. All the aforementioned algorithms 
search for the points in the convex hulls of each class that are the nearest to each 
other (Nt and No on Fig.I) , the maximal margin weight vector w = Nt - No-' 

XCHDM look for nearest points in the extrapolated convex hulls (X+ I and X-I 
on Fig.I). The extrapolated nearest points are X k = 1JkNk - 1JkFk' Note that 
they can be outside the convex hull because we allow negative contribution from 
external support vectors. Here again, the weight vector can be expressed as a 
difference between two points w = X+ - X - . When the data is non-separable, the 
solution is trivial with w = O. With the double set of Lagrange multipliers, the 
description of the XCHDM algorithm is beyond the scope of this paper. XCHDM 
with 1Jk = 0 are simple SVMs trained by the same algorithm as in [6]. 

An interesting way to follow the convergence of the XCHDM algorithm is the fol­
lowing. Define the extrapolated primal margin 

1'; = 2p = L ((1Jk+ I )vk - 1Jkflk) 
k 

and the dual margin 
1'; = IIX+ - X-II 

Convergence consists in reducing the duality gap 1'~ -1'; down to zero. In the rest 

of the paper, we will measure convergence with the duality ratio r = 1'~ . 
1'2 

To determine the threshold to compute the classifier output class sign(w.x+b) leaves 
us with two choices. We can require the separation to happen at the center of the 
primal margin, with the primal threshold (subtract Eq.(5) from Eq.(4)) 

1 
bl = -2" LYk ((1Jk+ I )vk-1JkJ.lk) 

k 



or at the center of the dual margin, with the dual threshold 

b2 = - ~w. 2:)(T}k+1)Nk - T}kFk) = - ~ (IIx+ 112 -lix-in 
k 

Again, at the minimum, it is easy to verify that b1 = b2 . When we did not let 
the XCHDM algorithm converge to the minimum, we found that b1 gave better 
generalization results. 

Our standard stopping heuristic is numerical: stop when the duality ratio gets over 
a fixed value (typically between 0.5 and 0.9). 

The only other stopping heuristic we have tried so far is based on the following idea. 
Define the set of extrapolated pairs as {(T}k+1)Xi -T}kXj; 1 :S i,j :S N}. Convergence 
means that we find extrapolated support pairs that contain every extrapolated pair 
on the correct side of the margin. We can relax this constraint and stop when the 
extrapolated support pairs contain every vector. This means that 12 must be lower 
than the primal true margin along w (measured on the non-extrapolated data) 
11 = y+ + Y -. This causes the XCHDM algorithm to stop long before 12 reaches 
Ii and is called the hybrid stopping heuristic. 

4 Beyond SVMs and discriminant approaches. 

Kernel Machines consist of any classifier of the type f(x) = L:i Yi(XiK(x, Xi). SVMs 
offer one solution among many others, with the constraint (Xi > O. 

XVMs look for solutions that no longer bear this constraint. While the algorithm 
described in Section 2 converges toward a solution where vectors act as support of 
margins (internal and external), experiments show that the performance of XVMs 
can be significantly improved if we stopped before full convergence. In this case, 
the vectors with (Xi =/: 0 do not line up onto any type of margin, and should not be 
called support vectors. 

The extrapolated margin contains terms which are caused by the extrapolation 
and are proportional to the width of each class along the direction of w. We 
would observe the same phenomenon if we had trained the classifier using Maximum 
Likelihood Estimation (MLE) (replace class width with variance). In both MLE and 
XVMs, examples which are the furthest from the decision surface play an important 
role. XVMs suggest an explanation why. 

Note also that like the Fisher discriminant , XVMs look for the projection that 
maximizes the inter-class variance while minimizing the intra-class variances. 

5 Experiments on MNIST 

The MNIST OCR database contains 60,000 handwritten digits for training and 
10,000 for testing (the testing data can be extended to 60,000 but we prefer to 
keep unseen test data for final testing and comparisons). This database has been 
extensively studied on a large variety of learning approaches [7]. It lead to the 
first SVM "success story" [2], and results have been improved since then by using 
knowledge about the invariance of the data [4]. 

The input vector is a list of 28x28 pixels ranging from 0 to 255. Before computing 
the kernels , the input vectors are normalized to 1: x = II~II' 

Good polynomial kernels are easy to define as Kp(x, y) = (x.y)P. We found these 
normalized kernels to outperform the unnormalized kernels Kp(x, y) = (a(x.y)+b)P 



that have been traditionally used for the MNIST data significantly. For instance, 
the baseline error rate with K4 is below 1.2%, whereas it hovers around 1.5% for 
K4 (after choosing optimal values for a and b)2. 

We also define normalized Gaussian kernels: 

Kp(x, y) = exp (-~ Ilx - y112) = [exp (x.y- 1)JP. (8) 

Eq.(8) shows how they relate to normalized polynomial kernels: when x.y « 1, 
Kp and Kp have the same asymptotic behavior. We observed that on MNIST, 
the performance with Kp is very similar to what is obtained with unnormalized 
Gaussian kernels Ku(x , y) = exp _(X~Y)2. However, they are easier to analyze and 
compare to polynomial kernels. 

MNIST contains 1 class per digit, so the total number of classes is M=10. To com­
bine binary classifiers to perform multiclass classifications, the two most common 
approaches were considered . 

• In the one-vs-others case (lvsR) , we have one classifier per class c, with the 
positive examples taken from class c and negative examples form the other 
classes. Class c is recognized when the corresponding classifier yields the 
largest output . 

• In the one-vs-one case (lvs1), each classifier only discriminates one class 
from another: we need a total of (MU:;-l) = 45 classifiers. 

Despite the effort we spent on optimizing the recombination of the classifiers [8] 3, 

1 vsR SVMs (Table 1) perform significantly better than 1 vs1 SVMs (Table 2). 4 

For each trial, the number of errors over the 10,000 test samples (#err) and the 
total number of support vectors( #SV) are reported. As we only count SV s which 
are shared by different classes once, this predicts the test time. For instance, 12,000 
support vectors mean that 20% of the 60,000 vectors are used as support. 

Preliminary experiments to choose the value of rJk with the hybrid criterion show 
that the results for rJk = 1 are better than rJk = 1.5 in a statistically significant 
way, and slightly better than rJk = 0.5. We did not consider configurations where 
rJ+ f; rJ -; however, this would make sense for the assymetrical 1 vsR classifiers. 

XVM gain in performance over SVMs for a given configuration ranges from 15% 
(1 vsR in Table 3) to 25% (1 vs1 in Table 2). 

2This may partly explain a nagging mystery among researchers working on MNIST: 
how did Cortes and Vapnik [2] obtain 1.1% error with a degree 4 polynomial ? 

3We compared the Max Wins voting algorithm with the DAGSVM decision tree algo­
rithm and found them to perform equally, and worse than 1 vsR SVMs. This is is surprising 
in the light of results published on other tasks [8] , and would require further investigations 
beyond the scope of this paper. 

4Slightly better performance was obtained with a new algorithm that uses the incre­
mental properties of our training procedure (this is be the performance reported in the 
tables). In a transductive inference framework , treat the test example as a training exam-
ple: for each of the M possible labels, retrain the M among (M(":-l) classifiers that use 
examples with such label. The best label will be the one that causes the smallest increase 
in the multiclass margin p such that it combines the classifier margins pc in the following 
manner 

~= ,,~ 
2 ~ 2 

P c~M Pc 

The fact that this margin predicts generalization is "justified" by Theorem 1 in [8]. 



Duality Ratio stop 
Kernel 0.40 0.75 0.99 

#err #SV #err #SV # err #SV 
K3 136 8367 136 11132 132 13762 
K4 127 8331 117 11807 119 15746 
K5 125 8834 119 12786 119 17868 
Kg 136 13002 137 18784 141 25953 
[(2 147 9014 128 11663 131 13918 
[(4 125 8668 119 12222 117 16604 
K5 125 8944 125 12852 125 18085 

Table 1: SVMs on MNIST with 10 1vsR classifiers 

Kernel SVM/ratio at 0.99 XVM/Hybrid 
# err #SV # err #SV 

K3 138 11952 117 17020 
K4 135 13526 110 16066 
K5 191 13526 114 15775 

Table 2: SVMjXVM on MNIST with 45 1 vs1 classifiers 

The 103 errors obtained with K4 and r = 0.5 in Table 3 represent only about 1% 
error: t his is the lowest error ever reported for any learning technique without a 
priori knowledge about the fact that t he input data corresponds to a pixel map (the 
lowest reproducible error previously reported was 1.2% with SVMs and polynomials 
of degree 9 [4], it could be reduced to 0.6% by using invariance properties of the 
pixel map). The downside is that XVMs require 4 times as many support vectors 
as standards SVMs. 

Table 3 compares stopping according to the duality ratio and the hybrid criterion. 
With the duality ratio, the best performance is most often reached with r = 0.50 (if 
t his happens to be consistent ly true, validation data to decide when to stop could 
be spared). The hybrid criterion does not require validation data and yields errors 
that, while higher than the best XVM, are lower than SVMs and only require a few 
more support vectors. It takes fewer iterations to train than SVMs. One way to 
interpret this hybrid stopping criterion is that we stop when interpolation in some 
(but not all) directions account for all non-interpolated vectors. This suggest that 
interpolation is only desirable in a few directions. 

XVM gain is stronger in the 1 vs 1 case (Table 2). This suggests that extrapolating 
on a convex hull that contains several different classes (in the 1 vsR case) may be 
undesirable. 

Duality Ratio stop Hybrid. 
Kernel 0.40 0. 50 0.75 Stop Crit. 

# err #SV # err #SV # err #SV # err #SV 
K3 118 46662 111 43819 116 50216 125 20604 
K4 112 40274 103 43132 110 52861 107 18002 
K5 109 36912 106 44226 110 49383 107 17322 
Kg 128 35809 126 39462 131 50233 125 19218 
K2 114 43909 114 46905 114 53676 119 20152 
[(4 108 36980 111 40329 114 51088 108 16895 

Table 3: XVMs on MNIST with 10 1 vsR classifiers 



6 The Soft Margin Case 

MNIST is characterized by the quasi-absence of outliers, so to assume that the 
data is fully separable does not impair performance at all. To extend XVMs to 
non-separable data, we first considered the traditional approaches of adding slack 
variables to allow margin constraints to be violated. The most commonly used ap­
proach with SVMs adds linear slack variables to the unitary margin. Its application 
to the XVM requires to give up the weight normalization constraint, so that the 
usual unitary margin can be used in the constraints [9] . 

Compared to standard SVMs, a new issue to tackle is the fact that each constraint 
corresponds to a pair of vectors: ideally, we should handle N 2 slack variables ~ij. 
To have linear constraints that can be solved with KKT, we need to have the 
decomposition ~ij = ('T}k+1)~i+'T}k~; (factors ('T}k+1) and 'T}k are added here to ease 
later simplifications). 

Similarly to Eq.(3), the constraint on the extrapolation from any pair of points is 

Vi,j E Ck, Yk (w. (('T}k+1)xi - 'T}kXj) +b) 2: 1 - ('T}k+1)~i - 'T}k~; with ~i'~; 2: 0 (9) 

Introducing J.tk = max (Yk(w,xj+b) - ~;) and Vk = min (Yk(W,Xi+b) + ~i)' we ob-
JECk .ECk 

tain the simpler double constraint 

Vi E Ck, Vk -~i ~ Yk(W,Xi+b) ~ J.tk+~; with ~i'~; 2: 0 (10) 

It follows from Eq.(9) that J.tk and Vk are tied through (l+'T}k)vk = l+'T}kJ.tk 

If we fix J.tk (and thus Vk) instead of treating it as an optimization variable, it would 
amount to a standard SVM regression problem with {-I, + I} outputs, the width 
of the asymmetric f-insensitive tube being J.tk-Vk = (~~~;)' 

This remark makes it possible for the reader to verify the results we reported on 
MNIST. Vsing the publicly available SVM software SVMtorch [1] with C = 10 and 
f = 0.1 as the width of the f-tube yields a 10-class error rate of 1.15% while the 
best performance using SVMtorch in classification mode is 1.3% (in both cases, we 
use Gaussian kernels with parameter (J = 1650). 

An explicit minimization on J.tk requires to add to the standard SVM regression 
problem the following constraint over the Lagrange multipliers (we use the same 
notation as in [9]) : 

Yi=l Yi=- l Yi=l Yi=- l 

Note that we still have the standard regression constraint I: ai = I: ai 
This has not been implemented yet , as we question the pertinence of the ~; slack 
variables for XVMs. Experiments with SVMtorch on a variety of tasks where 
non-zero slacks are required to achieve optimal performance (Reuters, VCI/Forest, 
VCI/Breast cancer) have not shown significant improvement using the regression 
mode while we vary the width of the f-tube. 

Many experiments on SVMs have reported that removing the outliers often gives 
efficient and sparse solutions. The early stopping heuristics that we have presented 
for XVMs suggest strategies to avoid learning (or to unlearn) the outliers, and this 
is the approach we are currently exploring. 



7 Concluding Remarks 

This paper shows that large margin classification on extrapolated data is equivalent 
to the addition of the minimization of a second external margin to the standard SVM 
approach. The associated optimization problem is solved efficiently with convex 
hull distance minimization algorithms. A 1 % error rate is obtained on the MNIST 
dataset: it is the lowest ever obtained without a-priori knowledge about the data. 

We are currently trying to identify what other types of dataset show similar gains 
over SVMs, to determine how dependent XVM performance is on the facts that the 
data is separable or has invariance properties. We have only explored a few among 
the many variations the XVM models and algorithms allow, and a justification 
of why and when they generalize would help model selection. Geometry-based 
algorithms that handle potential outliers are also under investigation. 

Learning Theory bounds that would be a function of both the margin and some 
form of variance of the data would be necessary to predict XVM generalization and 
allow us to also consider the extrapolation factor 'TJ as an optimization variable. 
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