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Abstract 

We introduce the notion of kernel-alignment, a measure of similar­
ity between two kernel functions or between a kernel and a target 
function. This quantity captures the degree of agreement between 
a kernel and a given learning task, and has very natural interpre­
tations in machine learning, leading also to simple algorithms for 
model selection and learning. We analyse its theoretical properties, 
proving that it is sharply concentrated around its expected value, 
and we discuss its relation with other standard measures of per­
formance. Finally we describe some of the algorithms that can be 
obtained within this framework, giving experimental results show­
ing that adapting the kernel to improve alignment on the labelled 
data significantly increases the alignment on the test set, giving 
improved classification accuracy. Hence, the approach provides a 
principled method of performing transduction. 
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1 Introduction 

Kernel based learning algorithms [1] are modular systems formed by a general­
purpose learning element and by a problem specific kernel function. It is crucial for 
the performance of the system that the kernel function somehow fits the learning 
target, that is that in the feature space the data distribution is somehow correlated 
to the label distribution. Several results exist showing that generalization takes 
place only when such correlation exists (nofreelunch; luckiness), and many classic 
estimators of performance (eg the margin) can be understood as estimating this 
relation. In other words, selecting a kernel in this class of systems amounts to the 
classic feature and model selection problems in machine learning. 

Measuring the similarity between two kernels, or the degree of agreement between 
a kernel and a given target function, is hence an important problem both for con­
ceptual and for practical reasons. As an example, it is well known that one can 
obtain complex kernels by combining or manipulating simpler ones, but how can 
one predict whether the resulting kernel is better or worse than its components? 



What a kernel does is to virtually map data into a feature space so that their relative 
positions in that space are what matters. The degree of clustering achieved in that 
space, and the relation between the clusters and the labeling to be learned, should 
be captured by such an estimator. 

Alternatively, one could regard kernels as 'oracles' or 'experts' giving their opinion 
on whether two given points belong to the same class or not. In this case, the 
correlation between experts (seen as random variables) should provide an indication 
of their similarity. 

We will argue that - if one were in possess of this information - the ideal kernel for 
a classification target y(x) would be K(x, z) = y(x)y(z). One way of estimating 
the extent to which the kernel achieves the right clustering is to compare the sum 
of the within class distances with the sum of the between class distances. This will 
correspond to the alignment between the kernel and the ideal kernel y(x)y(z). By 
measuring the similarity of this kernel with the kernel at hand - on the training 
set - one can assess the degree of fitness of such kernel. The measure of similarity 
that we propose, 'kernel alignment' would give in this way a reliable estimate of its 
expected value, since it is sharply concentrated around its mean. 
In this paper we will motivate and introduce the notion of Alignment (Section 2); 
prove its concentration (Section 3); discuss its implications for the generalisation 
of a simple classifier (Section 4) and deduce some simple algorithms (Section 5) to 
optimize it and finally report on some experiments (Section 6). 

2 Alignment 

Given an (unlabelled) sample 8 = {Xl, ... ,xm }, we use the following inner product 
between Gram matrices, (K1,K2)F = 2:7,'j=l K 1(Xi,Xj)K2(Xi,Xj) 

Definition 1 Alignment The (empirical) alignment of a kernel k1 with a kernel 
k2 with respect to the sample 8 is the quantity 

A(8 k k) = (K1 ,K2 )F 
, 1, 2 J(K1,K1)F(K2, K 2)F' 

where Ki is the kernel matrix for the sample 8 using kernel ki . 

This can also be viewed as the cosine of the angle between two bi-dimensional 
vectors K1 and K 2, representing the Gram matrices. If we consider K2 = yyl, 
where y is the vector of { -1, + I} labels for the sample, then 

A(8 K I) (K, yyl)F (K, yyl)F . / 1 I) 2 
, ,yy =. / / K K) / 1 I) . / / K K) , smce \yy ,yy F = m 

y \, F\YY ,yy F my \, F 

We will occasionally omit the arguments K or y when these are understood from 
the context or when y forms part of the sample. In the next section we will see how 
this definition provides with a method for selecting kernel parameters and also for 
combining kernels. 

3 Concentration 

The following theorem shows that the alignment is not too dependent on the training 
set 8. This result is expressed in terms of 'concentration'. Concentration means that 
the probability of an empirical estimate deviating from its mean can be bounded 
as an exponentially decaying function of that deviation. 

This will have a number of implications for the application and optimisation of the 
alignment. For example if we optimise the alignment on a random sample we can 



expect it to remain high on a second sample. Furthermore we will show in the next 
section that if the expected value of the alignment is high, then there exist functions 
that generalise well. Hence, the result suggests that we can optimise the alignment 
on a training set and expect to keep high alignment and hence good performance 
on a test set. Our experiments will demonstrate that this is indeed the case. 

The theorem makes use of the following result due to McDiarmid. Note that lEs is 
the expectation operator under the selection of the sample. 

TheoreIll 2 (McDiarmid!4}) Let Xl, ... ,Xn be independent random variables tak­
ing values in a set A, and assume that f : An -+ m. satisfies for 1 ::::; i ::::; n 

then for all f > 0, 

TheoreIll 3 The sample based estimate of the alignment is concentrated around its 
expected value. For a kernel with feature vectors of norm 1, we have that 

pm{s: 1.4(S) - A(y)1 ::::: €} ::::; 8 where € = C(S)V8ln(2/8)/m, (1) 

for a non-trivial function C (S) and value A(y). 

Proof: Let 

A 1 ~ A 1 ~ 2 lEs[.41(S)] 
A1(S) = m 2 .~ Yiy jk(Xi,Xj),A2(S) = m 2 .~ k(xi,Xj) , and A(y) = / A • 

',J=l ',J=l ylES [A2 (S)] 

First note that .4(S) = .41(S)/) .42(S). Define Al = lES[A1(S)] and A2 = 
lES[A2(S)], First we make use of McDiarmid's theorem to show that Ai(S) are 
concentrated for i = 1,2. Consider the training set S' = S \ {(Xi, Yi)} U {(X~, y~)}. 
We must bound the difference 

A A 1 4 
IAj(S) - Aj(S')1 ::::; -2 (2(m - 1)2) < -, 

m m 

for j = 1,2. Hence, we have Ci = 4/m for all i and we obtain from an application 
of McDiarmid's Theorem for j = 1 and 2, 

< 2exp ( f;m) 

Setting f = V8ln(2/8)/m, the right hand sides are less than or equal to 8/2. Hence, 
with probability at least 1 - 8, we have for j = 1, 2 1 Aj (S) - Aj 1 < f. But whenever 
these two inequalities hold, we have 

< 

< 



Remark. We could also define the true Alignment, based on the input dis­
tribution P, as follows: given functions f,g : X 2 --+ JR, we define (j,g)p = 
IX2 f(x, z)g(x, z)dP(x)dP(z), Then the alignment of a kernel k1 with a kernel k2 
is the quantity A(k1' k2) = J (kl,k2)P . 

(kl ,kl) P (k2 ,k2) P 

Then it is possible to prove that asymptotically as m tends to infinity the empirical 
alignment as defined above converges to the true alignment. However if one wants 
to obtain unbiased convergence it is necessary to slightly modify its definition by 
removing the diagonal, since for finite samples it biases the expectation by receiving 
too large a weight. With this modification A(y) in the statement of the theorem be­
comes the true alignment. We prefer not to pursue this avenue further for simplicity 
in this short article, we just note that the change is not significant. 

4 Generalization 

In this section we consider the implications of high alignment for the generalisation 
of a classifier. By generalisation we mean the test error err(h) = P(h(x) ¥- y). 
Our next observation relates the generalisation of a simple classification function 
to the value of the alignment. The function we consider is the expected Parzen 
window estimator hex) = sign(f(x)) = sign (lE(XI ,v') [y'k(x' , x)]). This corresponds 
to thresholding a linear function f in the feature space. We will show that if 
there is high alignment then this function will have good generalisation. Hence, by 
optimising the alignment we may expect Parzen window estimators to perform well. 
We will demonstrate that this prediction does indeed hold good in experiments. 

Theorem 4 Given any 8 > O. With probability 1 - 8 over a randomly drawn 
training set S, the generalisation accuracy of the expected Parzen window estimator 
h(x) = sign (lE(XI ,yl) [y' k(X', x)]) is bounded from above by 

err(h(x)) ::::: 1- A(S) + E + (mJ A2(S)) - 1, where E = C(S)V! ln~. 
Proof: (sketch) We assume throughout that the kernel has been normalised so that 
k(x , x) = 1 for all x. First observe that by Theorem 3 with probability greater than 
1- 8/2, IA(y) - A(S)I ::::: E. The result will follow if we show that with probability 
greater than 1- 8/2 the generalisation error of hS\(xl,y,) can be upper bounded by 
1 - A(y) + ~. Consider the quantity A(y) from Theorem 3. 

m A2(S) 

A(y) 

But 

lEs [~L:Z;=1 Yiyjk(xi,xj)] 

lEs [~2 L:Z;=1 k(Xi,Xj)2] 

I mC-ml f(x) I IlE [2] < V (x,y) y 

lEs [~L:#j Yiyjk(xi,xj)] + ~ 
C 

(m -1)2 I 2 
C2m 2 lE(XI,yl) [k(x, x ) ] < 1 

Hence, if E P(f(x) ¥- y) and a P(f(x) y), we have 

lEs [C~2 L:#j YiYj k(Xi' Xj)] ::::: 1 x a + 0 x E = a and E = 1 - a ::::: 1 - A(y) + c~, D 



An empirical estimate of the function f would be the Parzen window function. 
The expected margin of the empirical function is concentrated around the expected 
margin of the expected Parzen window. Hence, with high probability we can bound 
the error of j in terms of the empirically estimated alignment A(S). This is omitted 
due to lack of space. The concentration of j is considered in [3]. 

5 Algorithms 

The concentration of the alignment can be directly used for tuning a kernel family 
to the particular task, or for selecting a kernel from a set, with no need for training. 
The probability that the level of alignment observed on the training set will be out 
by more than € from its expectation for one of the kernels is bounded by 6, where 

€ is given by equation (1) for E = J ~ (InINI + lnj), where INI is the size of the 
set from which the kernel has been chosen. In fact we will select from an infinite 
family of kernels. Providing a uniform bound for such a class would require covering 
numbers and is beyond the scope of this paper. One of the main consequences of 
the definition of kernel alignment is in providing a practical criterion for combining 
kernels. We will justify the intuitively appealing idea that two kernels with a certain 
alignment with a target that are not aligned to each other, will give rise to a more 
aligned kernel combination. In particular we have that 

This shows that if two kernels with equal alignment to a given target yare also 
completely aligned to each other, then IIKI + K211F = IIKlllF + IIK211F and the 
alignment of the combined kernel remains the same. If on the other hand the 
kernels are not completely aligned, then the alignment of the combined kernel is 
correspondingly increased. 

To illustrate the approach we will take to optimising the kernel, consider a kernel 
that can be written in the form k(x, Xl) = l:.k I-tk(yk(x)yk(xl)) , where all the yk 
are orthogonal with respect to the inner product defined on the training set S, 
(y, yl)S = l:.:l YiYj. Assume further that one of them yt is the true label vector. 
We can now evaluate the alignment as A(y) ~ I-tt/v'l:.kl-t% . In terms of the 
Gram matrix this is written as Kij = l:.k I-tkyfyj where yf is the i-th label of the 
k-th classification. This special case is approximated by the decomposition into 
eigenvectors of the kernel matrix K = l:. Aiviv~, where Vi denotes the transpose of 
v and Vi is the i-th eigenvector with eigenvalue Ai. In other words, the more peaked 
the spectrum the more aligned (specific) the kernel can be. 
If by chance the eigenvector of the largest eigenvalue Al corresponds to the target 
labeling, then we will give to that labeling a fraction Ad v'l:.i AT of the weight that 
we can allocate to different possible labelings. The larger the emphasis of the kernel 
on a given target, the higher its alignment. 
In the previous subsection we observed that combining non-aligned kernels that are 
aligned with the target yields a kernel that is more aligned to the target. Consider 
the base kernels Ki = ViV~ where Vi are the eigenvectors of K, the kernel matrix 
for both labeled and unlabeled data. Instead of choosing only the most aligned 
ones, one could use a linear combination, with the weights proportional to their 
alignment (to the available labels): k = l:.i f(ai)viv~ where ai is the alignment of 
the kernel K i , and f(a) is a monotonically increasing function (eg. the identity or 
an exponential). Note that a recombination of these rank 1 kernels was made in 
so-called latent semantic kernels [2]. The overall alignment of the new kernel with 



the labeled data should be increased, and the new kernel matrix is expected also 
to be more aligned to the unseen test labels (because of the concentration, and the 
assumption that the split was random). 

Moreover, in general one can set up an optimization problem, aimed at finding the 
optimal a, that is the parameters that maximize the alignment of the combined 
kernel with the available labels. Given K = Li aiviv~ , using the orthonormality 
of the Vi and that (v v' ,uu') F = (v, u)}, the alignment can be written as 

A.(y) = (K, yy')F Li ai(vi, y)} 

mJLij aiaj(viv~, VjVj)F J(yy', yY')FJLi a;· 

Hence we have the following optimization problem: 

maximise W (a) (2) 

Setting derivatives to zero we obtain ~:. (Vi,Y)} - A2ai = 0 and hence ai (X 

(Vi,Y)}, giving the overall alignment A.(y) = JL,i~i'Y)j". 
This analysis suggests the following transduction algorithm. Given a partially la­
belled set of examples optimise its alignment by adapting the full kernel matrix by 
recombining its rank one eigenmatrices ViV~ using the coefficients ai determined by 
measuring the alignment between Vi and y on the labelled examples. Our results 
suggest that we should see a corresponding increase in the alignment on the un­
labelled part of the set, and hence a reduction in test error when using a Parzen 
window estimator. Results of experiments testing these predictions are given in the 
next section. 

6 Experiments 

We applied the transduction algorithm designed to take advantage of our results 
by optimizing alignment with the labeled part of the dataset using the spectral 
method described above. All of the results are averaged over 20 random splits with 
the standard deviation given in brackets. Table 1 shows the alignments of the 

Train Align Test Align Train Align Test Align 
0.076 (0.007) 0.092 (0.029) 0.207 (0.020) 0.240 (0.083 
0.228 ~0.012) 0.219 ~0.041) 0.240 ~0.016) 0.257 ~0.059) 

K50 0.075 ~0.016) 0.084 ~0.017) 0.210 ~0.031) 0.216 ~0.033) 
G50 0.242 (0.023) 0.181 (0.043) 0.257 (0.023) 0.202 (0.015) 
K 20 0.072 ~0.022) 0.081 ~0.006) 0.227 ~0.057) 0.210 ~0.015) 
G20 0.273 ~0.037) 0.034 ~0.046) 0.326 ~0.023) 0.118 ~0.017) 

Table 1: Mean and associated standard deviation alignment values using a linear 
kernel on the Breast (left two columns) and Ionosphere (right two columns). 

Gram matrices to the label matrix for different sizes of training set. The index 
indicates the percentage of training points. The K matrices are before adaptation, 
while the G matrices are after optimisation of the alignment using equation (2). 
The results on the left are for Breast Cancer data using a linear kernel, while the 
results on the right are for Ionosphere data. 

The left two columns of Table 2 shows the alignment values for Breast Cancer data 
using a Gaussian kernel together with the performance of an SVM classifier trained 



Table 2: Breast alignment (cols 1,2) and SVM error for a Gaussian kernel (sigma 
= 6) (col 3), Parzen window error for Breast (col 4) and Ionosphere (col 5) 

with the given gram matrix in the third column. The right two columns show the 
performance of the Parzen window classifier on the test set for Breast linear kernel 
(left column) and Ionosphere (right column). 

The results clearly show that optimising the alignment on the training set does 
indeed increase its value in all but one case by more than the sum of the standard 
deviations. Furthermore, as predicted by the concentration this improvement is 
maintained in the alignment measured on the test set with both linear and Gaussian 
kernels in all but one case (20% train with the linear kernel). The results for 
Ionosphere are less conclusive. Again as predicted by the theory the larger the 
alignment the better the performance that is obtained using the Parzen window 
estimator. The results of applying an SVM to the Breast Cancer data using a 
Gaussian kernel show a very slight improvement in the test error for both 80% and 
50% training sets. 

7 Conclusions 

We have introduced a measure of performance of a kernel machine that is much 
easier to analyse than standard measures (eg the margin) and that provides much 
simpler algorithms. We have discussed its statistical and geometrical properties, 
demonstrating that it is a well motivated and formally useful quantity. 

By identifying that the ideal kernel matrix has a structure of the type yy', we have 
been able to transform a measure of similarity between kernels into a measure of 
fitness of a given kernel. The ease and reliability with which this quantity can be 
estimated using only training set information prior to training makes it an ideal 
tool for practical model selection. We have given preliminary experimental results 
that largely confirm the theoretical analysis and augur well for the use of this tool 
in more sophisticated model (kernel) selection applications. 
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