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Abstract

In many scientific and engineering applications, detecting and under-
standing differences between two groups of examples can be reduced
to a classical problem of training a classifier for labeling new examples
while making as few mistakes as possible. In the traditional classifi-
cation setting, the resulting classifier is rarely analyzed in terms of the
properties of the input data captured by the discriminative model. How-
ever, such analysis is crucial if we want to understand and visualize the
detected differences. We propose an approach to interpretation of the sta-
tistical model in the original feature space that allows us to argue about
the model in terms of the relevant changes to the input vectors. For each
point in the input space, we define a discriminative direction to be the
direction that moves the point towards the other class while introducing
as little irrelevant change as possible with respect to the classifier func-
tion. We derive the discriminative direction for kernel-based classifiers,
demonstrate the technique on several examples and briefly discuss its use
in the statistical shape analysis, an application that originally motivated
this work.

1 Introduction

Once a classifier is estimated from the training data, it can be used to label new examples,
and in many application domains, such as character recognition, text classification and oth-
ers, this constitutes the final goal of the learning stage. The statistical learning algorithms
are also used in scientific studies to detect and analyze differences between the two classes
when the “correct answer” is unknown, and the information we have on the differences
is represented implicitly by the training set. Example applications include morphologi-
cal analysis of anatomical organs (comparing organ shape in patients vs. normal controls),
molecular design (identifying complex molecules that satisfy certain requirements), etc. In
such applications, interpretation of the resulting classifier in terms of the original feature
vectors can provide an insight into the nature of the differences detected by the learning
algorithm and is therefore a crucial step in the analysis. Furthermore, we would argue that
studying the spatial structure of the data captured by the classification function is important
in any application, as it leads to a better understanding of the data and can potentially help
in improving the technique.

This paper addresses the problem of translating a classifier into a different representation



that allows us to visualize and study the differences between the classes. We introduce
and derive a so called discriminative direction at every point in the original feature space
with respect to a given classifier. Informally speaking, the discriminative direction tells
us how to change any input example to make it look more like an example from another
class without introducing any irrelevant changes that possibly make it more similar to other
examples from the same class. It allows us to characterize differences captured by the
classifier and to express them as changes in the original input examples.

This paper is organized as follows. We start with a brief background section on kernel-
based classification, stating without proof the main facts on kernel-based SVMs necessary
for derivation of the discriminative direction. We follow the notation used in [3, 8, 9]. In
Section 3, we provide a formal definition of the discriminative direction and explain how
it can be estimated from the classification function. We then present some special cases,
in which the computation can be simplified significantly due to a particular structure of the
kernel. Section 4 demonstrates the discriminative direction for different kernels, followed
by an example from the problem of statistical analysis of shape differences that originally
motivated this work.

2 Basic Notation

Given a training set of I pairs {(xy,yx)}._,, Where x;, € R™ are observations and
yr € {—1,1} are corresponding labels, and a kernel function K : R™ x R™ — R, (with
its implied mapping function ®x : R™ — ), the Support Vector Machines (SVMs) al-
gorithm [8] constructs a classifier by implicitly mapping the training data into a higher
dimensional space and estimating a linear classifier in that space that maximizes the mar-
gin between the classes (Fig. 1a). The normal to the resulting separating hyperplane is a
linear combination of the training data:

W=D oyr®r(xt), )

where the coefficients ay, are computed by solving a constrained quadratic optimization
problem. The resulting classifier

fr(x) = (x-w)+b= Zk Yk (Pr (x) - Prc(xk)) +b = Zk aryr K (x,x5) +b (2)

defines a nonlinear separating boundary in the original feature space.

3 Discriminative Direction

Equations (1) and (2) imply that the classification function fx (x) is directly proportional
to the signed distance from the input point to the separating boundary computed in the
higher dimensional space defined by the mapping ® i. In other words, the function out-
put depends only on the projection of vector ® i (x) onto w and completely ignores the
component of @k (x) that is perpendicular to w. This suggests that in order to create a
displacement of ® x (x) that corresponds to the differences between the two classes, one
should change the vector’s projection onto w while keeping its perpendicular component
the same. In the linear case, we can easily perform this operation, since we have access to
the image vectors, ® 5 (x) = x. This is similar to visualization techniques typically used
in linear generative modeling, where the data variation is captured using PCA, and new
samples are generated by changing a single principal component at a time. However, this
approach is infeasible in the non-linear case, because we do not have access to the image
vectors i (x). Furthermore, the resulting image vector might not even have a source in
the original feature space, i.e., there might be no vector in the original space R™ that maps
into the resulting vector in the space . Our solution is to search for the direction around
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Figure 1: Kernel-based classification (a) and the discriminative direction (b).

the feature vector x in the original space that minimizes the divergence of its image @  (x)
from the direction of the projection vector w. We call it a discriminative direction, as it
represents the direction that affects the output of the classifier while introducing as little
irrelevant change as possible into the input vector.

Formally, as we move from x to x + dx in R™, the image vector in the space F changes by
dz = g (x + dx) — Pg(x) (Fig. 1b). This displacement can be thought of as a vector
sum of its projection onto w and its deviation from w:
dz - dz -
pP= {dz W>w and e=dz —p =dz — {dz W>w
(W - w) (w - w)
The discriminative direction minimizes the divergence component e, leading to the follow-
ing optimization problem:

@)

(dz - w)?
S @)
(wW-w)

s.t. dx|)* = e. (5)

minimize E(dx) = |le||* = (dz - dz) —

Since the cost function depends only on dot products of vectors in the space T, it can be
computed using the kernel function K:

(wew) = 3 anmysym K (X, Xm), )
(dn-w) = Vix(x)dx, ™
(dz - dz) = dx" Hg(x)dx, (8)

where V f (x) is the gradient of the classifier function fx evaluated at x and represented
by a row-vector and matrix Hx (x) is one of the (equivalent) off-diagonal quarters of the
Hessian of K, evaluated at (x, x):

Hewhal = TG en| ©

Substituting into Equation (4), we obtain
minimize  £(dx) = dx" (Hx(x) - |[wl| VARV (x)) dx  (10)
s.t. |dx||* = e. (11)

1A similar complication arises in kernel-based generative modeling, e.g., kernel PCA [7]. Con-
structing linear combinations of vectors in the space F leads to a globa search in the original
space [6, 7]. Since we are interested in the direction that best approximates w, we use infi nitesi-
mal analysis that results in adifferent optimization problem.



The solution to this problem is the smallest eigenvector of matrix

Qk(x) = Hy (x) — |W]| * V£ () V fx (x). (12)

Note that in general, the matrix Qx (x) and its smallest eigenvector are not the same for
different points in the original space and must be estimated separately for every input vec-
tor x. Furthermore, each solution defines two opposite directions in the input space, corre-
sponding to the positive and the negative projections onto w. We want to move the input
example towards the opposite class and therefore assign the direction of increasing function
values to the examples with label —1 and the direction of decreasing function values to the
examples with label 1.

Obtaining a closed-form solution of this minimization problem could be desired, or even
necessary, if the dimensionality of the input space is high and computing the smallest eigen-
vector is computationally expensive and numerically challenging. In the next section, we
demonstrate how a particular form of the matrix H x (x) leads to an analytical solution for
a large family of kernel functions?.

3.1 Analytical Solution for Discriminative Direction

It is easy to see that if Hy(x) is a multiple of the identity matrix, Hx (x) = cI, then
the smallest eigenvector of the matrix @ x(x) is equal to the largest eigenvector of the
matrix V £ (x)V fx (x), namely the gradient of the classifier function V £ (x). We will
show in this section that both for the linear kernel and, more surprisingly, for RBF kernels,
the matrix Hy (x) is of the right form to yield an analytical solution of this form. It is
well known that to achieve the fastest change in the value of a function, one should move
along its gradient. In the case of the linear and the RBF kernels, the gradient also corre-
sponds to the direction that distinguishes between the two classes while ignoring inter-class
variability.

Dot product kernels, K(u,v) = k({(u-v)). Forany dot product kernel,

0?K(u,v)

_ 1/ 2\5. . ” 2\
3uiavj =k (”XH )513 +k (”XH )xl‘r.]a (13)

(u=x,v=x)

and therefore H (x) = ¢I for all x if and only if &”(||x||°) = 0, i.e., when k is a linear
function. Thus the linear kernel is the only dot product kernel for which this simplification
is relevant. In the linear case, H (x) = I, and the discriminative direction is defined as

dx* = VfE(x)=w = Zakykxk; E(dx*) = 0. (14)

This is not entirely surprising, as the classifier is a linear function in the original space and
we can move precisely along w.

Polynomial kernels are a special case of dot product kernels. For polynomials of degree
d>2,
%K (u,v)

_ 2\d—15. . _ 2Nd—2,.
P, — d(1+ %26y + d(d— 1)1+ [|x]|2) " 2ziz;.  (15)

(u=x,v=x)

Hxk (x) is not necessarily diagonal for all x, and we have to solve the general eigenvector
problem to identify the discriminative direction.

2While a very specialized structure of H  (x) in the next section is suffi cient for simplifying the
solution signifi cantly, it is by no means necessary, and other kernel families might exist for which
estimating the discriminative direction does not require solving the full eigenvector problem.



Distancekernels, K (u,v) = k(||u — v||?). For a distance kernel,

0?K(u,v)

S = —2K/(0)6;;, (16)

(u=x,v=x)
and therefore the discriminative direction can be determined analytically:
* * — 2
dx* = Vfie(x); E(dx") = =2k (0) = |w| *IV/E) . A7)

The Gaussian kernels are a special case of the distance kernel family, and yield a closed
form solution for the discriminative direction:

Clx—xg 2

ax' = =2/y Y engre o (o) E(x7) = 2/~ [ VIEGII/ W] (18)

Unlike the linear case, we cannot achieve zero error, and the discriminative direction is only
an approximation. The exact solution is unattainable in this case, as it has no corresponding
direction in the original space.

3.2 Geometric Interpretation

We start by noting that the image vectors ® i (x)’s do not populate the entire space F, but
rather form a manifold of lower dimensionality whose geometry is fully defined by the
kernel function K (Fig. 1). We will refer to this manifold as the target manifold in this
discussion. We cannot explicitly manipulate elements of the space FF, but can only explore
the target manifold through search in the original space. We perform the search in the
original space by considering all points on an infinitesimally small sphere centered at the
original input vector x. In the range space of the mapping function ® x, the images of
points x + dx form an ellipsoid defined by the quadratic form dz” dz = dx” Hy (x)dx.

For Hi(x) ~ I, the ellipsoid becomes a sphere, all dz’s are of the same length, and
the minimum of error in the displacement vector dz corresponds to the maximum of the
projection of dz onto w. Therefore, the discriminative direction is parallel to the gradient
of the classifier function. If Hx (x) is of any other form, the length of the displacement
vector dz changes as we vary dx, and the minimum of the error in the displacement is not
necessarily aligned with the direction that maximizes the projection.

As a side note, our sufficient condition, Hx (x) ~ I, implies that the target manifold is
locally flat, i.e., its Riemannian curvature is zero. Curvature and other properties of target
manifolds have been studied extensively for different kernel functions [1, 4]. In particular,
one can show that the kernel function implies a metric on the original space. Similarly to
the natural gradient [2] that maximizes the change in the function value under an arbitrary
metric, we minimize the changes that do not affect the function under the metric implied
by the kernel.

3.3 Sdecting Inputs

Given any input example, we can compute the discriminative direction that represents the
differences between the two classes captured by the classifier in the neighborhood of the
example. But how should we choose the input examples for which to compute the dis-
criminative direction? We argue that in order to study the differences between the classes,
one has to examine the input vectors that are close to the separating boundary, namely,
the support vectors. Note that this approach is significantly different from the generative
modeling, where a “typical” representative, often constructed by computing the mean of
the training data, is used for analysis and visualization. In the discriminative framework,
we are more interested in the examples that lie close to the opposite class, as they define
the differences between the two classes and the optimal separating boundary.
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Figure 2: Discriminative direction for linear (a), quadratic (b) and Gaussian RBF (c) clas-
sifiers. The background is colored using the values of the classifier function. The black
solid line is the separating boundary, the dotted lines indicate the margin corridor. Support
vectors are indicated using solid markers. The length of the vectors is proportional to the
magnitude of the classifier gradient.

Support vectors define a margin corridor whose shape is determined by the kernel type
used for training. We can estimate the distance from any support vector to the separating
boundary by examining the gradient of the classification function for that vector. Large
gradient indicates that the support vector is close to the separating boundary and therefore
can provide more information on the spatial structure of the boundary. This provides a
natural heuristic for assigning importance weighting to different support vectors in the
analysis of the discriminative direction.

4 Simple Example

We first demonstrate the the proposed approach on a simple example. Fig. 2 shows three
different classifiers, linear, quadratic and Gaussian RBF, for the same example training set
that was generated using two Gaussian densities with different means and covariance ma-
trices. We show the estimated discriminative direction for all points that are close to the
separating boundary, not just support vectors. While the magnitude of discriminative di-
rection vector is irrelevant in our infinitesimal analysis, we scaled the vectors in the figure
according to the magnitude of the classifier gradient to illustrate importance ranking. Note
that for the RBF support vectors far away from the boundary (Fig. 2c), the magnitude of
the gradient is so small (tenth of the magnitude at the boundary), it renders the vectors
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Figure 3: Right hippocampus in schizophrenia study. First support vector from each group
is shown, four views per shape (front, medial, back, lateral). The color coding is used to
visualize the amount and the direction of the deformation that corresponds to the discrim-
inative direction, changing from blue (moving inwards) to green (zero deformation) to red
(moving outwards).

too short to be visible in the figure. We can see that in the areas where there is enough
evidence to estimate the boundary reliably, all three classifiers agree on the boundary and
the discriminative direction (lower cluster of arrows). However, if the boundary location
is reconstructed based on the regularization defined by the kernel, the classifiers suggest
different answers (the upper cluster of arrows), stressing the importance of model selection
for classification. The classifiers also provide an indication of the reliability of the differ-
ences represented by each arrow, which was repeatedly demonstrated in other experiments
we performed.

5 Morphological Studies

Morphological studies of anatomical organs motivated the analysis presented in this paper.
Here, we show the results for the hippocampus study in schizophrenia. In this study, MRI
scans of the brain were acquired for schizophrenia patients and a matched group of normal
control subjects. The hippocampus structure was segmented (outlined) in all of the scans.
Using the shape information (positions of the outline points), we trained a Gaussian RBF
classifier to discriminate between schizophrenia patients and normal controls. However,
the classifier in its original form does not provide the medical researchers with information
on how the hippocampal shape varies between the two groups. Our goal was to translate
the information captured by the classifier into anatomically meaningful terms of organ
development and deformation.

In this application, the coordinates in the input space correspond to the surface point loca-
tions for any particular example shape. The discriminative direction vector corresponds to
displacements of the surface points and can be conveniently represented by a deformation
of the original shape, yielding an intuitive description of shape differences for visualization
and further analysis. We show the deformation that corresponds to the discriminative direc-
tion, omitting the details of shape extraction (see [5] for more information). Fig. 3 displays
the first support vector from each group with the discriminative direction “painted” on it.
Each row shows four snapshots of the same shape form different viewpoints®. The color at
every node of the surface encodes the corresponding component of the discriminative di-
rection. Note that the deformation represented by the two vectors is very similar in nature,
but of opposite signs, as expected from the analysis in Section 3.3. We can see that the
main deformation represented by this pair of vectors is localized in the bulbous “head” of

3An alternative way to visualize the same information isto actually generate the animation of the
exampl e shape undergoing the detected deformation.



the structure. The next four support vectors in each group represent a virtually identical de-
formation to the one shown here. Starting with such visualization, the medical researchers
can explore the organ deformation and interaction caused by the disease.

6 Conclusions

We presented an approach to quantifying the classifier’s behavior with respect to small
changes in the input vectors, trying to answer the following question: what changes would
make the original input look more like an example from the other class without introduc-
ing irrelevant changes? We introduced the notion of the discriminative direction, which
corresponds to the maximum changes in the classifier’s response while minimizing irrel-
evant changes in the input. For kernel-based classifiers the discriminative directions is
determined by minimizing the divergence of the infinitesimal displacement vector and the
normal to the separating hyperplane in the higher dimensional kernel space. The classifier
interpretation in terms of the original features in general, and the discriminative direction
in particular, is an important component of the data analysis in many applications where
the statistical learning techniques are used to discover and study structural differences in
the data.
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