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Abstract

We propose a new classification for multi-agent learning algorithms, with
each league of players characterized by both their possible strategies and
possible beliefs. Using this classification, we review the optimality of ex-
isting algorithms, including the case of interleague play. We propose an
incremental improvement to the existing algorithms that seems to achieve
average payoffs that are at least the Nash equilibrium payoffs in the long-
run against fair opponents.

1 Introduction

The topic of learning in multi-agent environments has received increasing attention over the
past several years. Game theorists have begun to examine learning models in their study of
repeated games, and reinforcement learning researchers have begun to extend their single-
agent learning models to the multiple-agent case. As traditional models and methods from
these two fields are adapted to tackle the problem of multi-agent learning, the central issue
of optimality is worth revisiting. What do we expect a successful learner to do?

Matrix games and Nash equilibrium. From the game theory perspective, the repeated
game is a generalization of the traditional one-shot game, or matrix game. The matrix
game is defined as a reward matrix R; for each player, R; : A; x Ay — R, where A; is the
set of actions available to player i. Purely competitive games are called zero-sum games
and must satisfy Ry = —R,. Each player simultaneously chooses to play a particular
action a; € A, or a mixed policy u; = PD(A;), which is a probability distribution over
the possible actions, and receives reward based on the joint action taken. Some common
examples of single-shot matrix games are shown in Figure 1. The traditional assumption is
that each player has no prior knowledge about the other player. As is standard in the game
theory literature, it is thus reasonable to assume that the opponent is fully rational and
chooses actions that are in its best interest. In return, we must play a best response to the
opponent’s choice of action. A best response function for player i, BR;(x—;), is defined
to be the set of all optimal policies for player i, given that the other players are playing the
jointpolicy pu—;:  BR;(p—i) = {p; € Mi|Ri(pf, p—i) > Ri(pi, po—i)Vpi € M;}, where
M; is the set of all possible policies for agent i.

If all players are playing best responses to the other players’ strategies, p; € BR;(u—;)Vi,
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Figure 1: Some common examples of single-shot matrix games.

then the game is said to be in Nash equilibrium. Once all players are playing by a Nash
equilibrium, no single player has an incentive to unilaterally deviate from his equilibrium
policy. Any game can be solved for its Nash equilibria using quadratic programming, and
a player can choose an optimal strategy in this fashion, given prior knowledge of the game
structure. The only problem arises when there are multiple Nash equilibria. If the players
do not manage to coordinate on one equilibrium joint policy, then they may all end up
worse off. The Hawk-Dove game shown in Figure 1(c) is a good example of this problem.
The two Nash equilibria occur at (1,2) and (2,1), but if the players do not coordinate, they
may end up playing a joint action (1,1) and receive O reward.

Stochastic gamesand reinforcement learning.  Despite these problems, there is general
agreement that Nash equilibrium is an appropriate solution concept for one-shot games. In
contrast, for repeated games there are a range of different perspectives. Repeated games
generalize one-shot games by assuming that the players repeat the matrix game over many
time periods. Researchers in reinforcement learning view repeated games as a special case
of stochastic, or Markov, games. Researchers in game theory, on the other hand, view
repeated games as an extension of their theory of one-shot matrix games. The result-
ing frameworks are similar, but with a key difference in their treatment of game history.
Reinforcement learning researchers focus their attention on choosing a single stationary
policy . that will maximize the learner’s expected rewards in all future time periods given

that we are in time ¢, max, E,, [Zf:t 7T—tRT(u)}, where 7" may be finite or infinite,

and p = PD(A). In the infinite time-horizon case, we often include the discount factor
0<y<l.

Littman [1] analyzes this framework for zero-sum games, proving convergence to the Nash
equilibrium for his minimax-Q algorithm playing against another minimax-Q agent. Claus
and Boutilier [2] examine cooperative games where R, = Rs, and Hu and Wellman [3]
focus on general-sum games. These algorithms share the common goal of finding and
playing a Nash equilibrium. Littman [4] and Hall and Greenwald [5] further extend this
approach to consider variants of Nash equilibrium for which convergence can be guaran-
teed. Bowling and Veloso [6] and Nagayuki et al. [7] propose to relax the mutual optimality
requirement of Nash equilibrium by considering rational agents, which always learn to play
a stationary best-response to their opponent’s strategy, even if the opponent is not playing
an equilibrium strategy. The motivation is that it allows our agents to act rationally even
if the opponent is not acting rationally because of physical or computational limitations.
Fictitious play [8] is a similar algorithm from game theory.

Game theoretic per spective of repeated games.  As alluded to in the previous section,
game theorists often take a more general view of optimality in repeated games. The key
difference is the treatment of the history of actions taken in the game. Recall that in the



Table 1: Summary of multi-agent learning algorithms under our new classification.

| [ Bo [ B [ B |
Ho minimax-Q, Bully
Nash-Q
Hy Godfather
Hoo || @-learning (Qo), | Q1 multiplicative-
(WoLF-)PHC, weight*
fictitious play

* assumes public knowledge of the opponent’s policy at each period

stochastic game model, we took p; = PD(A;). Here we redefine u;, : H — PD(A;),
where H = J, H' and H" is the set of all possible histories of length ¢. Histories are
observations of joint actions, h' = (a;,a_;, h'~1). Player i’s strategy at time ¢ is then
expressed as p;(h'~1). In essence, we are endowing our agent with memory. Moreover,
the agent ought to be able to form beliefs about the opponent’s strategy, and these beliefs
ought to converge to the opponent’s actual strategy given sufficient learning time. Let
B:; + H — PD(A_;) be player i’s belief about the opponent’s strategy. Then a learning
path is defined to be a sequence of histories, beliefs, and personal strategies. Now we can
define the Nash equilibrium of a repeated game in terms of our personal strategy and our
beliefs about the opponent. If our prediction about the opponent’s strategy is accurate, then
we can choose an appropriate best-response strategy. If this holds for all players in the
game, then we are guaranteed to be in Nash equilibrium.

Proposition 1.1. A learning path {(h®, u; (h*=1), Bi(h*=1))|t = 1,2,...} converges to a
Nash equilibrium iff the following two conditions hold:

e Optimization: V¢, u;(ht~1) € BR;(3:(h*~1)). We always play a best-response to
our prediction of the opponent’s strategy.

e Prediction: lim;_. |3;(h'=1) — u_;(h*~1)| = 0. Over time, our belief about the
opponent’s strategy converges to the opponent’s actual strategy.

However, Nachbar and Zame [9] shows that this requirement of simultaneous prediction
and optimization is impossible to achieve, given certain assumptions about our possible
strategies and possible beliefs. We can never design an agent that will learn to both predict
the opponent’s future strategy and optimize over those beliefs at the same time. Despite this
fact, if we assume some extra knowledge about the opponent, we can design an algorithm
that approximates the best-response stationary policy over time against any opponent. In
the game theory literature, this concept is often called universal consistency. Fudenburg
and Levine [8] and Freund and Schapire [10] independently show that a multiplicative-
weight algorithm exhibits universal consistency from the game theory and machine learning
perspectives. This give us a strong result, but requires the strong assumption that we know
the opponent’s policy at each time period. This is typically not the case.

2 A new classification and a new algorithm

We propose a general classification that categorizes algorithms by the cross-product of
their possible strategies and their possible beliefs about the opponent’s strategy, H x B. An
agent’s possible strategies can be classified based upon the amount of history it has in mem-
ory, from H, to H.. Given more memory, the agent can formulate more complex policies,
since policies are maps from histories to action distributions. H, agents are memoryless
and can only play stationary policies. Agents that can recall the actions from the previous



time period are classified as 7, and can execute reactive policies. At the other extreme,
Hoo agents have unbounded memory and can formulate ever more complex strategies as
the game is played over time. An agent’s belief classification mirrors the strategy classifi-
cation in the obvious way. Agents that believe their opponent is memoryless are classified
as By players, B; players believe that the opponent bases its strategy on the previous ¢-
periods of play, and so forth. Although not explicitly stated, most existing algorithms make
assumptions and thus hold beliefs about the types of possible opponents in the world.

We can think of each H, x B, as a different league of players, with players in each league
roughly equal to one another in terms of their capabilities. Clearly some leagues contain
less capable players than others. We can thus define a fair opponent as an opponent from an
equal or lesser league. The idea is that new learning algorithms should ideally be designed
to beat any fair opponent.

The key role of beliefs.  Within each league, we assume that players are fully rational
in the sense that they can fully use their available histories to construct their future policy.
However, an important observation is that the definition of full rationality depends on their
beliefs about the opponent. If we believe that our opponent is a memoryless player, then
even if we are an H., player, our fully rational strategy is to simply model the opponent’s
stationary strategy and play our stationary best response. Thus, our belief capacity and our
history capacity are inter-related. Without a rich set of possible beliefs about our opponent,
we cannot make good use of our available history. Similarly, and perhaps more obviously,
without a rich set of historical observations, we cannot hope to model complex opponents.

Discussion of current algorithms.  Many of the existing algorithms fall within the H . x
By league. As discussed in the previous section, the problem with these players is that even
though they have full access to the history, their fully rational strategy is stationary due to
their limited belief set. A general example of a H, x By player is the policy hill climber
(PHC). It maintains a policy and updates the policy based upon its history in an attempt
to maximize its rewards. Originally PHC was created for stochastic games, and thus each
policy also depends on the current state s. In our repeated games, there is only one state.

For agent 4, Policy Hill Climbing (PHC) proceeds as follows:
1. Let o and ¢ be the learning rates. Initialize

1
Q(s,a) «— 0, pui(s,a) — WVS €S,a €A,
%
2. Repeat,
a. From state s, select action a according to the mixed policy u;(s) with some exploration.

b. Observing reward r and next state s’, update
Q(s,a) — (1 - a)Q(s,a) + a(r + ymax Q(s', a')).

c. Update (s, a) and constrain it to a legal probability distribution:

) if a = argmax,, Q(s,a’)

pi(s,a) «— pi(s,a) + { ﬁ otherwise

The basic idea of PHC is that the @-values help us to define a gradient upon which we
execute hill-climbing. Bowling and Veloso’s WoLLF-PHC [6] modifies PHC by adjusting §
depending on whether the agent is “winning” or “losing.” True to their league, PHC players
play well against stationary opponents.



At the opposite end of the spectrum, Littman and Stone [11] propose algorithms in Hq x B,
and H; X B that are leader strategies in the sense that they choose a fixed strategy and
hope that their opponent will “follow” by learning a best response to that fixed strategy.
Their “Bully” algorithm chooses a fixed memoryless stationary policy, while “Godfather”
has memory of the last time period. Opponents included normal Q-learning and @ players,
which are similar to Q-learners except that they explicitly learn using one period of memory
because they believe that their opponent is also using memory to learn. The interesting
result is that “Godfather” is able to achieve non-stationary equilibria against (21 in the
repeated prisoner’s dilemna game, with rewards for both players that are higher than the
stationary Nash equilibrium rewards. This demonstrates the power of having belief models.
However, because these algorithms do not have access to more than one period of history,
they cannot begin to attempt to construct statistical models the opponent. “Godfather”
works well because it has a built-in best response to @@, learners rather than attempting to
learn a best response from experience.

Finally, Hu and Wellman’s Nash-Q and Littman’s minimax-Q are classified as Hq x By
players, because even though they attempt to learn the Nash equilibrium through experi-
ence, their play is fixed once this equilibrium has been learned. Furthermore, they assume
that the opponent also plays a fixed stationary Nash equilibrium, which they hope is the
other half of their own equilibrium strategy. These algorithms are summarized in Table 1.

A new classof players. Asdiscussed above, most existing algorithms do not form beliefs
about the opponent beyond B,. None of these approaches is able to capture the essence of
game-playing, which is a world of threats, deceits, and generally out-witting the opponent.
We wish to open the door to such possibilities by designing learners that can model the
opponent and use that information to achieve better rewards. Ideally we would like to
design an algorithm in H,, x B, that is able to win or come to an equilibrium against
any fair opponent. Since this is impossible [9], we start by proposing an algorithm in the
league Hoo X Boo that plays well against a restricted class of opponents. Since many of the
current algorithms are best-response players, we choose an opponent class such as PHC,
which is a good example of a best-response player in H., x By. We will demonstrate that
our algorithm indeed beats its PHC opponents and in fact does well against most of the
existing fair opponents.

A new algorithm: PHC-Exploiter. Our algorithm is different from most previous work
in that we are explicitly modeling the opponent’s learning algorithm and not simply his
current policy. In particular, we would like to model players from H ., x By. Since we
are in Hoo X Boo, it is rational for us to construct such models because we believe that
the opponent is learning and adapting to us over time using its history. The idea is that we
will “fool” our opponent into thinking that we are stupid by playing a decoy policy for a
number of time periods and then switch to a different policy that takes advantage of their
best response to our decoy policy. From a learning perspective, the idea is that we adapt
much faster than the opponent; in fact, when we switch away from our decoy policy, our
adjustment to the new policy is immediate. In contrast, the H., x By opponent adjusts its
policy by small increments and is furthermore unable to model our changing behavior. We
can repeat this “bluff and bash” cycle ad infinitum, thereby achieving infinite total rewards
ast — oo. The opponent never catches on to us because it believes that we only play
stationary policies.

A good example of a H, x By player is PHC. Bowling and Veloso showed that in self-
play, a restricted version of WoLF-PHC always reaches a stationary Nash equilibrium in
two-player two-action games, and that the general WoLF-PHC seems to do the same in
experimental trials. Thus, in the long run, a WoLF-PHC player achieves its stationary
Nash equilibrium payoff against any other PHC player. We wish to do better than that
by exploiting our knowledge of the PHC opponent’s learning strategy. We can construct



a PHC-Exploiter algorithm for agent 7 that proceeds like PHC in steps 1-2b, and then
continues as follows:

c. Observing action a' ; at time ¢, update our history % and calculate an estimate of the
opponent’s policy:

Yret—w #(hlT] = a)

w

ﬂt—i(sv a) = va,

where w is the window of estimation and #(h[7] = a) = 1 if the opponent’s action at time
7 is equal to a, and 0 otherwise. We estimate i'~," (s) similarly.

d. Update § by estimating the learning rate of the PHC opponent:

e. Update p;(s,a). If we are winning, i.e. >, pi(s,a")Q(s,a’) > Ri(iif(s), fi—i(s)),
then update

_ 1 ifa = argmax, Q(s,a’)
pils, a) — { 0 otherwise !

otherwise we are losing, then update

] if a = argmax,, Q(s,a’)

wi(s,a) « pi(s,a) + { otherwise

_ =6
[Ai]—1

Note that we derive both the opponent’s learning rate § and the opponent’s policy ji—;(s)
from estimates using the observable history of actions. If we assume the game matrix is
public information, then we can solve for the equilibrium strategy /7 (s), otherwise we can
run WoLF-PHC for some finite number of time periods to obtain an estimate this equi-
librium strategy. The main idea of this algorithm is that we take full advantage of all time
periods in which we are winning, that is, when >~ , 11;(s, a’)Q(s,a") > R;(juf(s), fi—i(s)).

Analysis. The PHC-Exploiter algorithm is based upon PHC and thus exhibits the same
behavior as PHC in games with a single pure Nash equilibrium. Both agents generally
converge to the single pure equilibrium point. The interesting case arises in competitive
games where the only equilibria require mixed strategies, as discussed by Singh et al [12]
and Bowling and Veloso [6]. Matching pennies, shown in Figure 1(a), is one such game.
PHC-Exploiter is able to use its model of the opponent’s learning algorithm to choose better
actions.

In the full knowledge case where we know our opponent’s policy 1o and learning rate 4§ at
every time period, we can prove that a PHC-Exploiter learning algorithm will guarantee us
unbounded reward in the long run playing games such as matching pennies.

Proposition 2.1. In the zero-sum game of matching pennies, where the only Nash equi-
librium requires the use of mixed strategies, PHC-Exploiter is able to achieve unbounded
rewards as t — oo against any PHC opponent given that play follows the cycle C defined
by the arrowed segments shown in Figure 2.

Play proceeds along C,,, C;, then jumps from (0.5, 0) to (1,0), follows the line segments to
(0.5, 1), then jumps back to (0, 1). Given a point (x,y) = (u1(H ), u2(H)) on the graph in
Figure 2, where p;(H) is the probability by which player i plays Heads, we know that our
expected reward is

Ri(z,y) = =1 x[(@)(y) + 1 —2)(1 —y)] + 1 x [(1 = z)(y) + ()(1 - y)].
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Figure 2: Theoretical (left), Empirical (right). The cyclic play is evident in our empirical
results, where we play a PHC-Exploiter player 1 against a PHC player 2.
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Figure 3: Total rewards for agent 1 increase as we gain reward through each cycle.

We wish to show that

/CRl(x,y)dt:QX (/Cw Rl(x,y)dt—&—/q Rl(x,y)dt> >0

We consider each part separately. In the losing section, we let g(t) = = ¢ and h(t) =
y=1/2—t where0 <t <1/2. Then

1/2
o Rl(z,y)dt:/o Ri(g(t), h(t))dt = _%

Similarly, we can show that we receive 1/4 reward over C,,. Thus, [, Ri(z,y)dt =1/3 >
0, and we have shown that we receive a payoff greater than the Nash equilibrium payoff of
zero over every cycle. It is easy to see that play will indeed follow the cycle C to a good
approximation, depending on the size of . In the next section, we demonstrate that we
can estimate o and - sufficiently well from past observations, thus eliminating the full
knowledge requirements that were used to ensure the cyclic nature of play above.

Experimental results. We used the PHC-Exploiter algorithm described above to play
against several PHC variants in different iterated matrix games, including matching pen-
nies, prisoner’s dilemna, and rock-paper-scissors. Here we give the results for the match-
ing pennies game analyzed above, playing against WoLF-PHC. We used a window of
w = 5000 time periods to estimate the opponent’s current policy po and the opponent’s



learning rate do. As shown in Figure 2, the play exhibits the cyclic nature that we pre-
dicted. The two solid vertical lines indicate periods in which our PHC-Exploiter player is
winning, and the dashed, roughly diagonal, lines indicate periods in which it is losing.

In the analysis given in the previous section, we derived an upper bound for our total re-
wards over time, which was 1/6 for each time step. Since we have to estimate various
parameters in our experimental run, we do not achieve this level of reward. We gain an
average of 0.08 total reward for each time period. Figure 3 plots the total reward for our
PHC-Exploiter agent over time. The periods of winning and losing are very clear from
this graph. Further experiments tested the effectiveness of PHC-Exploiter against other fair
opponents, including itself. Against all the existing fair opponents shown in Table 1, it
achieved at least its average equilibrium payoff in the long-run. Not surprisingly, it also
posted this score when it played against a multiplicative-weight learner.

Conclusion and futurework. In this paper, we have presented a new classification for
multi-agent learning algorithms and suggested an algorithm that seems to dominate existing
algorithms from the fair opponent leagues when playing certain games. Ideally, we would
like to create an algorithm in the league H ., x By that provably dominates larger classes
of fair opponents in any game. Moreover, all of the discussion contained within this paper
dealt with the case of iterated matrix games. We would like to extend our framework to
more general stochastic games with multiple states and multiple players. Finally, it would
be interesting to find practical applications of these multi-agent learning algorithms.
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