
Incorporating Invariances in Nonlinear
Support Vector Machines

Olivier Chapelle
olivier.chapelle@lip6.fr

LIP6, Paris , France
Biowulf Technologies

Bernhard Scholkopf
bernhard.schoelkopf@tuebingen.mpg.de
Max-Planck-Institute, Tiibingen, Germany

Biowulf Technologies

Abstract

The choice of an SVM kernel corresponds to the choice of a rep­
resentation of the data in a feature space and, to improve per­
formance , it should therefore incorporate prior knowledge such as
known transformation invariances. We propose a technique which
extends earlier work and aims at incorporating invariances in non­
linear kernels. We show on a digit recognition task that the pro­
posed approach is superior to the Virtual Support Vector method,
which previously had been the method of choice.

1 Introduction

In some classification tasks, an a priori knowledge is known about the invariances
related to the task. For instance, in image classification, we know that the label of
a given image should not change after a small translation or rotation.

More generally, we assume we know a local transformation Lt depending on a
parameter t (for instance, a vertical translation of t pixels) such that any point x
should be considered equivalent to LtX, the transformed point. Ideally, the output
of the learned function should be constant when its inputs are transformed by the
desired invariance.

It has been shown [1] that one can not find a non-trivial kernel which is globally
invariant. For this reason, we consider here local invariances and for this purpose
we associate at each training point X i a tangent vector dXi,

dXi = lim - (LtXi - Xi) = - LtXi 1 81
t--+o t 8t t=o

In practice dXi can be either computed by finite difference or by differentiation.
Note that generally one can consider more than one invariance transformation.

A common way of introducing invariances in a learning system is to add the per­
turbed examples LtXi in the training set [7]. Those points are often called virtual
examples. In the SVM framework , when applied only to the SVs, it leads to the
Virtual Support Vector (VSV) method [10]. An alternative to this is to modify
directly the cost function in order to take into account the tangent vectors. This

has been successfully applied to neural networks [13] and linear Support Vector
Machines [11]. The aim of the present work is to extend these methods to the case
of nonlinear SVMs which will be achieved mainly by using the kernel peA trick
[12].

The paper is organized as follows. After introducing the basics of Support Vector
Machines in section 2, we recall the method proposed in [11] to train invariant linear
SVMs (section 3). In section 4, we show how to extend it to the nonlinear case and
finally experimental results are provided in section 5.

2 Support Vector Learning

We introduce some standard notations for SVMs; for a complete description, see
[15]. Let {(Xi, Yi) h<i<n be a set of training examples, Xi E IRd , belonging to classes
labeled by Yi E {-1,1}. In kernel methods, we map these vectors into a feature
space using a kernel function K(Xi' Xj) that defines an inner product in this feature
space. The decision function given by an SVM is the maximal margin hyperplane
in this space,

g(X) = sign(f(x)), where f(x) = (~a?YiK(Xi'X) + b) . (1)

The coefficients a? are obtained by maximizing the functional

n 1 n

W(o:) = Lai -"2 L aiajYiyjK(Xi,Xj) (2)
i=l i,j=l

under the constraints L:~= 1 aiYi = 0 and ai ~ O.

This formulation of the SVM optimization problem is called the hard margin for­
mulation since no training errors are allowed. In the rest of the paper, we will
not consider the so called soft-margin SVM algorithm [4], where training errors are
allowed.

3 Invariances for Linear SVMs

For linear SVMs, one wants to find a hyperplane whose normal vector w is as
orthogonal as possible to the tangent vectors. This can be easily understood from
the equality

f(Xi + dXi) - f(Xi) = w . dXi'
For this purpose, it has been suggested [11] to minimize the functional

n

(1 - ')')w2 + ')' L(w, dXi)2 (3)
i=l

subject to the constraints Yi(W . Xi + b) ~ 1. The parameter,), trades off between
normal SVM training (')' = 0) and full enforcement of the orthogonality between
the hyperplane and the invariance directions (')' ---+ 1).

Let us introduce

c, ~ ((1-0)[+0 ~dx'dxi) 'i', (4)

the square root of the regularized covariance matrix of the tangent vectors.

It was shown in [11] that training a linear invariant SVM, i.e. minimizing (3), is
equivalent to a standard SVM training after the following linear transformation of
the input space

C - 1
X --+ , x.

This method led to significant improvements in linear SVMs, and to small improve­
ments when used as a linear preprocessing step in nonlinear SVMs. The latter,
however, was a hybrid system with unclear theoretical foundations. In the next
section we show how to deal with the nonlinear case in a principled way.

4 Extension to the nonlinear case

In the nonlinear case, the data are first mapped into a high-dimensional feature
space where a linear decision boundary is computed. To extend directly the previous
analysis to the nonlinear case, one would need to compute the matrix C, in feature
space,

()
1~

C, = (1 - '"Y)I + '"Y ~ dlJ> (Xi) dlJ> (Xi) T (5)

and the new kernel function
K(x , y) = C~llJ>(x) . C~llJ>(y) = lJ>(x) T C~21J>(y) (6)

However, due to the high dimension of the feature space, it is impossible to do it
directly. We propose two different ways for overcoming this difficulty.

4.1 Decomposition of the tangent Gram matrix

In order to be able to compute the new kernel (6) , we propose to diagonalize the
matrix C, (eq 5) using a similar approach as the kernel PCA trick [12]. In that
article, they showed how it was possible to diagonalize the feature space covariance
matrix by computing the eigendecomposition of the Gram matrix of those points.
Presently, instead of having a set of training points {1J>(Xi)} , we have a set of tangent
vectors {dlJ> (Xi)} and a tangent covariance matrix (the right term of the sum in (5))

Let us introduce the Gram matrix Kt of the tangent vectors:

Kij = dlJ>(Xi)· dlJ>(xj)

K(Xi +dXi, Xj +dxj) - K(Xi +dXi, Xj) - K(Xi ' Xj +dxj) + K(Xi' Xj) (7)

d T02K(Xi,Xj)d . (8)
xi ~ ~ X J UXiUXj

This matrix Kt can be computed either by finite differences (equation 7) or with the
analytical derivative expression given by equation (8) . Note that for a linear kernel,
K(x,y) = x T y, and (8) reads Kfj = dxi dXj, which is a standard dot product
between the tangent vectors.

Writing the eigendecomposition of Kt as Kt = U AUT , and using the kernel PCA
tools [12], one can show after some algebra (details in [2]) that the new kernel matrix
reads

K(x,y) 1 n1(1 1) --Kx y + - ---
I - '"Y (,) ~ Ap '"Y Ap + 1 - '"Y 1 - '"Y

(~ U. d T OK(Xi' X)) (~U. d T OK(Xi' y))
~ 'p x, ~ ~ 'p x, ~
~1 U~ ~1 U~

4.2 The kernel PCA map

A drawback of the previous approach appears when one wants to deal with multiple
invariances (i.e. more than one tangent vector per training point). Indeed, it
requires to diagonalize the matrix Kt (cf eq 7), whose size is equal to the number of
different tangent vectors. For this reason, we propose an alternative method. The
idea is to use directly the so-called kernel peA map, first introduced in [12] and
extended in [14].

This map is based on the fact that even in a high dimensional feature space 1i, a
training set {Xl , .. . , x n } of size n when mapped to this feature space spans a sub­
space E C 1i whose dimension is at most n . More precisely, if (VI"'" Vn) E En is
an orthonormal basis of E with each Vi being a principal axis of {<I>(xd, ... , <I> (xn)} ,

the kernel peA map 'i/J : X -+ ~n is defined coordinatewise as

'i/Jp (x) = <I>(x) . v P ' 1:S p:S n.

Each principal direction has a linear expansion on the training points {<I>(Xi)} and
the coefficients of this expansion are obtained using kernel peA [12]. Writing the
eigendecompostion of K as K = U AUT, with U an orthonormal matrix and A a
diagonal one, it turns out that the the kernel peA map reads

'i/J(x) = A -1/2UTk(x),

where k (x) = (K(x, Xl)"'" K(x, xn)) T .

(9)

Note that by definition, for all i and j , <I>(Xi) and <I>(Xj) lie in E and thus K(Xi ' Xj) =
<I>(Xi) . <I>(Xj) = 'i/J(Xi) . 'i/J(Xj). This reflects the fact that if we retain all principal
components, kernel peA is just a basis transform in E, leaving the dot product of
training points invariant.

As a consequence, training a nonlinear SVM on {Xl , ... , xn} is equivalent to training
a linear SVM on {'i/J(xd, . . . ,'i/J(xn)} and thus, thanks to the nonlinear mapping 'i/J,
we can work directly in the linear space E and use exactly the technique described
for invariant linear SVMs (section 3) . However the invariance directions d<I>(Xi) do
not necessarily belong to E. By projecting them onto E, some information might
be lost. The hope is that this approximation will give a similar decision function to
the exact one obtained in section 4.l.

Finally, the proposed algorithm consists in training an invariant linear SVM as
described in section 3 with training set { 'i/J(XI) , ... ,'i/J(xn)} and with invariance
directions {d'i/J(XI) , ... , d'i/J (xn)}, where d'i/J (Xi) = 'i/J (Xi + dXi) - 'i/J(Xi), which can
be expressed from equation (9) as

4.3 Comparisons with the VSV method

One might wonder what is the difference between enforcing an invariance and just
adding the virtual examples LtXi in the training set. Indeed the two approaches
are related and some equivalence can be shown [6] .

So why not just add virtual examples? This is the idea of the Virtual Support
Vector (VSV) method [10] . The reason is the following: if a training point Xi is
far from the margin, adding the virtual example LtXi will not change the decision
boundary since neither of the points can become a support vector. Hence adding

virtual examples in the SVM framework enforces invariance only around the decision
boundary, which, as an aside, is the main reason why the virtual SV method only
adds virtual examples generated from points that were support vectors in the earlier
iteration.

One might argue that the points which are far from the decision boundary do not
provide any information anyway. On the other hand, there is some merit in not
only keeping the output label invariant under the transformation Lt, but also the
real-valued output. This can be justified by seeing the distance of a given point
to the margin as an indication of its class-conditional probability [8]. It appears
reasonable that an invariance transformation should not affect this probability too
much.

5 Experiments

In our experiments, we compared a standard SVM with several methods taking into
account invariances: standard SVM with virtual examples (cf. the VSV method [10])
[VSV], invariant SVM as described in section 4.1 [ISVM] and invariant hyperplane
in kernel peA coordinates as described in section 4.2 [IHKPcA].

The hybrid method described in [11] (see end of section 3) did not perform better
than the VSV method and is not included in our experiments for this reason.

Note that in the following experiments, each tangent vector d<I>(Xi) has been nor­
malized by the average length vI: Ild<I>(xi)W/n in order to be scale independent.

5.1 Toy problem

The toy problem we considered is the following: the training data has been gener­
ated uniformly from [-1 , 1]2. The true decision boundary is a circle centered at the
origin: f(x) = sign(x2 - 0.7).

The a priori knowledge we want to encode in this toy problem is local invariance
under rotations. Therefore, the output of the decision function on a given training
point Xi and on its image R(Xi,C:) obtained by a small rotation should be as similar
as possible. To each training point, we associate a tangent vector dXi which is
actually orthogonal to Xi.

A training set of 30 points was generated and the experiments were repeated 100

times. A Gaussian kernel K(x,y) = exp (_ II X2~~ 1I 2) was chosen.

The results are summarized in figure 1. Adding virtual examples (VSV method)
is already very useful since it made the test error decrease from 6.25% to 3.87%
(with the best choice of a). But the use of ISVM or IHKPcA yields even better
performance. On this toy problem, the more the invariances are enforced b -+ 1),
the better the performances are (see right side of figure 1), reaching a test error of
1.11%.

When comparing log a = 1.4 and log a = 0 (right side of of figure 1), one notices
that the decrease in the test error does not have the same speed. This is actually
the dual of the phenomenon observed on the left side of this figure: for a same value
of gamma, the test error tends to increase, when a is larger. This analysis suggests
that 'Y needs to be adapted in function of a. This can be done automatically by the
gradient descent technique described in [3].

0.14

0 .12

0.1

0 .08

O.02 '-----_~, ------:-0~.5--~0 --0~.5,------~------'c-". 5

Log sigma

0.12

0.06

0.04

0.02

- log sigma=-O.8
log sigma=O

- - 10 si ma=1,4

%'------~-~-~6 -~8--,~0-~, 2~

- Log (1-gamma)

Figure 1: Left: test error for different learning algorithms plotted against the width
of a RBF kernel and "(fixed to 0.9. Right: test error of IHKPcA across "(and for
different values of (5. The test errors are averaged over the 100 splits and the error
bars correspond to the standard deviation of the means.

5.2 Handwritten digit recognition

As a real world experiment, we tried to incorporate invariances for a handwritten
digit recognition task. The USPS dataset have been used extensively in the past
for this purpose, especially in the SVM community. It consists of 7291 training and
2007 test examples.

According to [9], the best performance has been obtained for a polynomial kernel
of degree 3, and all the results described in this section were performed using this
kernel. The local transformations we considered are translations (horizontal and
vertical). All the tangent vectors have been computed by a finite difference between
the original digit and its I-pixel translated.

We split the training set into 23 subsets of 317 training examples after a random
permutation of the training and test set. Also we concentrated on a binary clas­
sification problem, namely separating digits a to 4 against 5 to 9. The gain in
performance should also be valid for the multiclass case.

Figure 2 compares ISVM, IHKPcA and VSV for different values of "(. From those
figures, it can be seen that the difference between ISVM (the original method) and
IHKPcA (the approximation) is much larger than in the toy example. The difference

to the toy example is probably due to the input dimensionality. In 2 dimensions,
with an RBF kernel, the 30 examples of the toy problem "almost span" the whole
feature space, whereas with 256 dimensions , this is no longer the case.

What is noteworthy in these experiments is that our proposed method is much
better than the standard VSV. As explained in section 4.3, the reason for this
might be that invariance is enforced around all training points and not only around
support vectors. Note that what we call VSV here is a standard SVM with a double
size training set containing the original data points and their translates.

The horizontal invariance yields larger improvements than the vertical one. One
of the reason might be that the digits in the USPS database are already centered
vertically.

0.068

0 .066

0 .064

0 .062

0.06

0 .058

0.056

0 .054
0 0.5 1.5 2 2.5

-Log (1-gamma)

- IHKPCA
ISVM

- - VSV

3.5

Vertical translation (to the top)

0.068

0.066

0 .064

0.062

0.06

0 .058

0.056

0 .054
0 0.5 1.5 2 2.5

-Log (1-gamma)

- IHKPCA
ISVM

- - VSV

3.5

Horizontal translation (to the right)

Figure 2: Comparison of ISVM, IHKPcA and VSV on the USPS dataset. The left
of the plot ("(= 0) corresponds to standard SVM whereas the right part of the plot
h -+ 1) means that a lot of emphasis is put on the enforcement of the constraints.
The test errors are averaged over the 23 splits and the error bars correspond to the
standard deviation of the means.

6 Conclusion

We have extended a method for constructing invariant hyperplanes to the nonlinear
case. We have shown results that are superior to the virtual SV method. The latter
has recently broken the record on the NIST database which is the "gold standard"
of handwritten digit benchmarks [5], therefore it appears promising to also try the
new system on that task. For this propose, a large scale version of this method
needs to be derived. The first idea we tried is to compute the kernel PCA map
using only a subset of the training points. Encouraging results have been obtained
on the lO-class USPS database (with the whole training set), but other methods
are also currently under study.

References

[1] C. J. C. Burges. Geometry and invariance in kernel based methods. In
B. Sch6lkopf, C. J . C. Burges, and A. J . Smola, editors, Advances in Ker­
nel Methods - Support Vector Learning. MIT Press, 1999.

[2] O. Chapelle and B. Sch6lkopf. Incorporating invariances in nonlinear Support
Vector Machines, 2001. Availabe at: www-connex.lip6.frrchapelle.

[3] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46:131- 159, 2002.

[4] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273 -
297,1995.

[5] D. DeCoste and B. Sch6lkopf. Training invariant support vector machines.
Machine Learning, 2001. In press.

[6] Todd K. Leen. From data distributions to regularization in invariant learning.
In Nips, volume 7. The MIT Press, 1995.

[7] P. Niyogi, T. Poggio, and F. Girosi. Incorporating prior information in machine
learning by creating virtual examples. IEEE Proceedings on Intelligent Signal
Processing, 86(11):2196-2209, November 1998.

[8] John Platt. Probabilities for support vector machines. In A. Smola, P. Bartlett,
B. Sch6lkopf, and D. Schuurmans, editors, Advances in Large Margin Classi­
fiers. MIT Press, Cambridge, MA, 2000.

[9] B. Sch6lkopf, C. Burges, and V. Vapnik. Extracting support data for a given
task. In U. M. Fayyad and R. Uthurusamy, editors, First International Con­
ference on Knowledge Discovery fj Data Mining. AAAI Press, 1995.

[10] B. Sch6lkopf, C. Burges, and V. Vapnik. Incorporating invariances in support
vector learning machines. In Artificial Neural Networks - ICANN'96, volume
1112, pages 47- 52, Berlin, 1996. Springer Lecture Notes in Computer Science.

[11] B. Sch6lkopf, P. Y. Simard, A. J. Smola, and V. N. Vapnik. Prior knowledge
in support vector kernels. In MIT Press, editor, NIPS, volume 10, 1998.

[12] B. Sch6lkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299- 1310, 1998.

[13] P. Simard, Y. LeCun, J. Denker, and B. Victorri. Transformation invariance
in pattern recognition, tangent distance and tangent propagation. In G. Orr
and K. Muller, editors, Neural Networks: Tricks of the trade. Springer, 1998.

[14] K. Tsuda. Support vector classifier with asymmetric kernel function. In M. Ver­
leysen, editor, Proceedings of ESANN'99, pages 183- 188,1999.

[15] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

