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Abstract 

The choice of an SVM kernel corresponds to the choice of a rep­
resentation of the data in a feature space and, to improve per­
formance , it should therefore incorporate prior knowledge such as 
known transformation invariances. We propose a technique which 
extends earlier work and aims at incorporating invariances in non­
linear kernels. We show on a digit recognition task that the pro­
posed approach is superior to the Virtual Support Vector method, 
which previously had been the method of choice. 

1 Introduction 

In some classification tasks, an a priori knowledge is known about the invariances 
related to the task. For instance, in image classification, we know that the label of 
a given image should not change after a small translation or rotation. 

More generally, we assume we know a local transformation Lt depending on a 
parameter t (for instance, a vertical translation of t pixels) such that any point x 
should be considered equivalent to LtX, the transformed point. Ideally, the output 
of the learned function should be constant when its inputs are transformed by the 
desired invariance. 

It has been shown [1] that one can not find a non-trivial kernel which is globally 
invariant. For this reason, we consider here local invariances and for this purpose 
we associate at each training point X i a tangent vector dXi, 

dXi = lim - (LtXi - Xi) = - LtXi 1 81 
t--+o t 8t t=o 

In practice dXi can be either computed by finite difference or by differentiation. 
Note that generally one can consider more than one invariance transformation. 

A common way of introducing invariances in a learning system is to add the per­
turbed examples LtXi in the training set [7]. Those points are often called virtual 
examples. In the SVM framework , when applied only to the SVs, it leads to the 
Virtual Support Vector (VSV) method [10]. An alternative to this is to modify 
directly the cost function in order to take into account the tangent vectors. This 



has been successfully applied to neural networks [13] and linear Support Vector 
Machines [11]. The aim of the present work is to extend these methods to the case 
of nonlinear SVMs which will be achieved mainly by using the kernel peA trick 
[12]. 

The paper is organized as follows. After introducing the basics of Support Vector 
Machines in section 2, we recall the method proposed in [11] to train invariant linear 
SVMs (section 3). In section 4, we show how to extend it to the nonlinear case and 
finally experimental results are provided in section 5. 

2 Support Vector Learning 

We introduce some standard notations for SVMs; for a complete description, see 
[15]. Let {(Xi, Yi) h<i<n be a set of training examples, Xi E IRd , belonging to classes 
labeled by Yi E {-1,1}. In kernel methods, we map these vectors into a feature 
space using a kernel function K(Xi' Xj) that defines an inner product in this feature 
space. The decision function given by an SVM is the maximal margin hyperplane 
in this space, 

g(X) = sign(f(x)), where f(x) = (~a?YiK(Xi'X) + b) . (1) 

The coefficients a? are obtained by maximizing the functional 

n 1 n 

W(o:) = Lai -"2 L aiajYiyjK(Xi,Xj) (2) 
i=l i,j=l 

under the constraints L:~= 1 aiYi = 0 and ai ~ O. 

This formulation of the SVM optimization problem is called the hard margin for­
mulation since no training errors are allowed. In the rest of the paper, we will 
not consider the so called soft-margin SVM algorithm [4], where training errors are 
allowed. 

3 Invariances for Linear SVMs 

For linear SVMs, one wants to find a hyperplane whose normal vector w is as 
orthogonal as possible to the tangent vectors. This can be easily understood from 
the equality 

f(Xi + dXi) - f(Xi) = w . dXi' 
For this purpose, it has been suggested [11] to minimize the functional 

n 

(1 - ')')w2 + ')' L(w, dXi)2 (3) 
i=l 

subject to the constraints Yi(W . Xi + b) ~ 1. The parameter,), trades off between 
normal SVM training (')' = 0) and full enforcement of the orthogonality between 
the hyperplane and the invariance directions (')' ---+ 1). 

Let us introduce 

c, ~ ((1-0)[ +0 ~dx'dxi) 'i', (4) 

the square root of the regularized covariance matrix of the tangent vectors. 



It was shown in [11] that training a linear invariant SVM, i.e. minimizing (3), is 
equivalent to a standard SVM training after the following linear transformation of 
the input space 

C - 1 
X --+ , x. 

This method led to significant improvements in linear SVMs, and to small improve­
ments when used as a linear preprocessing step in nonlinear SVMs. The latter, 
however, was a hybrid system with unclear theoretical foundations. In the next 
section we show how to deal with the nonlinear case in a principled way. 

4 Extension to the nonlinear case 

In the nonlinear case, the data are first mapped into a high-dimensional feature 
space where a linear decision boundary is computed. To extend directly the previous 
analysis to the nonlinear case, one would need to compute the matrix C, in feature 
space, 

( )
1~ 

C, = (1 - '"Y)I + '"Y ~ dlJ> (Xi) dlJ> (Xi) T (5) 

and the new kernel function 
K(x , y) = C~llJ>(x) . C~llJ>(y) = lJ>(x) T C~21J>(y) (6) 

However, due to the high dimension of the feature space, it is impossible to do it 
directly. We propose two different ways for overcoming this difficulty. 

4.1 Decomposition of the tangent Gram matrix 

In order to be able to compute the new kernel (6) , we propose to diagonalize the 
matrix C, (eq 5) using a similar approach as the kernel PCA trick [12]. In that 
article, they showed how it was possible to diagonalize the feature space covariance 
matrix by computing the eigendecomposition of the Gram matrix of those points. 
Presently, instead of having a set of training points {1J>(Xi)} , we have a set of tangent 
vectors {dlJ> (Xi)} and a tangent covariance matrix (the right term of the sum in (5)) 

Let us introduce the Gram matrix Kt of the tangent vectors: 

Kij = dlJ>(Xi )· dlJ>(xj) 

K(Xi +dXi, Xj +dxj) - K(Xi +dXi, Xj) - K(Xi ' Xj +dxj) + K(Xi' Xj) (7) 

d T02K(Xi,Xj)d . (8) 
xi ~ ~ X J UXiUXj 

This matrix Kt can be computed either by finite differences (equation 7) or with the 
analytical derivative expression given by equation (8) . Note that for a linear kernel, 
K(x,y) = x T y, and (8) reads Kfj = dxi dXj, which is a standard dot product 
between the tangent vectors. 

Writing the eigendecomposition of Kt as Kt = U AUT , and using the kernel PCA 
tools [12], one can show after some algebra (details in [2]) that the new kernel matrix 
reads 

K(x,y) 1 n1( 1 1) --Kx y + - ---
I - '"Y (,) ~ Ap '"Y Ap + 1 - '"Y 1 - '"Y 

(~ U. d T OK(Xi' X)) (~U. d T OK(Xi' y)) 
~ 'p x, ~ ~ 'p x, ~ 
~1 U~ ~1 U~ 



4.2 The kernel PCA map 

A drawback of the previous approach appears when one wants to deal with multiple 
invariances (i.e. more than one tangent vector per training point). Indeed, it 
requires to diagonalize the matrix Kt (cf eq 7), whose size is equal to the number of 
different tangent vectors. For this reason, we propose an alternative method. The 
idea is to use directly the so-called kernel peA map, first introduced in [12] and 
extended in [14]. 

This map is based on the fact that even in a high dimensional feature space 1i, a 
training set {Xl , .. . , x n } of size n when mapped to this feature space spans a sub­
space E C 1i whose dimension is at most n . More precisely, if (VI"'" Vn ) E En is 
an orthonormal basis of E with each Vi being a principal axis of {<I>(xd, ... , <I> (xn )} , 

the kernel peA map 'i/J : X -+ ~n is defined coordinatewise as 

'i/Jp (x) = <I>(x) . v P ' 1:S p:S n. 

Each principal direction has a linear expansion on the training points {<I>(Xi)} and 
the coefficients of this expansion are obtained using kernel peA [12]. Writing the 
eigendecompostion of K as K = U AUT, with U an orthonormal matrix and A a 
diagonal one, it turns out that the the kernel peA map reads 

'i/J(x) = A -1/2UTk(x), 

where k (x) = (K(x, Xl)"'" K(x, xn)) T . 

(9) 

Note that by definition, for all i and j , <I>(Xi) and <I>(Xj) lie in E and thus K(Xi ' Xj) = 
<I>(Xi) . <I>(Xj) = 'i/J(Xi) . 'i/J(Xj). This reflects the fact that if we retain all principal 
components, kernel peA is just a basis transform in E, leaving the dot product of 
training points invariant. 

As a consequence, training a nonlinear SVM on {Xl , ... , xn} is equivalent to training 
a linear SVM on {'i/J(xd, . . . ,'i/J(xn)} and thus, thanks to the nonlinear mapping 'i/J, 
we can work directly in the linear space E and use exactly the technique described 
for invariant linear SVMs (section 3) . However the invariance directions d<I>(Xi) do 
not necessarily belong to E. By projecting them onto E, some information might 
be lost. The hope is that this approximation will give a similar decision function to 
the exact one obtained in section 4.l. 

Finally, the proposed algorithm consists in training an invariant linear SVM as 
described in section 3 with training set { 'i/J(XI) , ... ,'i/J(xn)} and with invariance 
directions {d'i/J(XI) , ... , d'i/J (xn)}, where d'i/J (Xi) = 'i/J (Xi + dXi ) - 'i/J(Xi), which can 
be expressed from equation (9) as 

4.3 Comparisons with the VSV method 

One might wonder what is the difference between enforcing an invariance and just 
adding the virtual examples LtXi in the training set. Indeed the two approaches 
are related and some equivalence can be shown [6] . 

So why not just add virtual examples? This is the idea of the Virtual Support 
Vector (VSV) method [10] . The reason is the following: if a training point Xi is 
far from the margin, adding the virtual example LtXi will not change the decision 
boundary since neither of the points can become a support vector. Hence adding 



virtual examples in the SVM framework enforces invariance only around the decision 
boundary, which, as an aside, is the main reason why the virtual SV method only 
adds virtual examples generated from points that were support vectors in the earlier 
iteration. 

One might argue that the points which are far from the decision boundary do not 
provide any information anyway. On the other hand, there is some merit in not 
only keeping the output label invariant under the transformation Lt, but also the 
real-valued output. This can be justified by seeing the distance of a given point 
to the margin as an indication of its class-conditional probability [8]. It appears 
reasonable that an invariance transformation should not affect this probability too 
much. 

5 Experiments 

In our experiments, we compared a standard SVM with several methods taking into 
account invariances: standard SVM with virtual examples (cf. the VSV method [10]) 
[VSV], invariant SVM as described in section 4.1 [ISVM] and invariant hyperplane 
in kernel peA coordinates as described in section 4.2 [ IHKPcA ]. 

The hybrid method described in [11] (see end of section 3) did not perform better 
than the VSV method and is not included in our experiments for this reason. 

Note that in the following experiments, each tangent vector d<I>(Xi) has been nor­
malized by the average length vI: Ild<I>(xi)W/n in order to be scale independent. 

5.1 Toy problem 

The toy problem we considered is the following: the training data has been gener­
ated uniformly from [-1 , 1]2. The true decision boundary is a circle centered at the 
origin: f(x) = sign(x2 - 0.7). 

The a priori knowledge we want to encode in this toy problem is local invariance 
under rotations. Therefore, the output of the decision function on a given training 
point Xi and on its image R(Xi,C:) obtained by a small rotation should be as similar 
as possible. To each training point, we associate a tangent vector dXi which is 
actually orthogonal to Xi. 

A training set of 30 points was generated and the experiments were repeated 100 

times. A Gaussian kernel K(x,y) = exp (_ II X2~~ 1I 2) was chosen. 

The results are summarized in figure 1. Adding virtual examples (VSV method) 
is already very useful since it made the test error decrease from 6.25% to 3.87% 
(with the best choice of a). But the use of ISVM or IHKPcA yields even better 
performance. On this toy problem, the more the invariances are enforced b -+ 1), 
the better the performances are (see right side of figure 1), reaching a test error of 
1.11%. 

When comparing log a = 1.4 and log a = 0 (right side of of figure 1), one notices 
that the decrease in the test error does not have the same speed. This is actually 
the dual of the phenomenon observed on the left side of this figure: for a same value 
of gamma, the test error tends to increase, when a is larger. This analysis suggests 
that 'Y needs to be adapted in function of a. This can be done automatically by the 
gradient descent technique described in [3]. 
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Figure 1: Left: test error for different learning algorithms plotted against the width 
of a RBF kernel and "( fixed to 0.9. Right: test error of IHKPcA across "( and for 
different values of (5. The test errors are averaged over the 100 splits and the error 
bars correspond to the standard deviation of the means. 

5.2 Handwritten digit recognition 

As a real world experiment, we tried to incorporate invariances for a handwritten 
digit recognition task. The USPS dataset have been used extensively in the past 
for this purpose, especially in the SVM community. It consists of 7291 training and 
2007 test examples. 

According to [9], the best performance has been obtained for a polynomial kernel 
of degree 3, and all the results described in this section were performed using this 
kernel. The local transformations we considered are translations (horizontal and 
vertical). All the tangent vectors have been computed by a finite difference between 
the original digit and its I-pixel translated. 

We split the training set into 23 subsets of 317 training examples after a random 
permutation of the training and test set. Also we concentrated on a binary clas­
sification problem, namely separating digits a to 4 against 5 to 9. The gain in 
performance should also be valid for the multiclass case. 

Figure 2 compares ISVM, IHKPcA and VSV for different values of "( . From those 
figures, it can be seen that the difference between ISVM (the original method) and 
IHKPcA (the approximation) is much larger than in the toy example. The difference 

to the toy example is probably due to the input dimensionality. In 2 dimensions, 
with an RBF kernel, the 30 examples of the toy problem "almost span" the whole 
feature space, whereas with 256 dimensions , this is no longer the case. 

What is noteworthy in these experiments is that our proposed method is much 
better than the standard VSV. As explained in section 4.3, the reason for this 
might be that invariance is enforced around all training points and not only around 
support vectors. Note that what we call VSV here is a standard SVM with a double 
size training set containing the original data points and their translates. 

The horizontal invariance yields larger improvements than the vertical one. One 
of the reason might be that the digits in the USPS database are already centered 
vertically. 
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Figure 2: Comparison of ISVM, IHKPcA and VSV on the USPS dataset. The left 
of the plot ("( = 0) corresponds to standard SVM whereas the right part of the plot 
h -+ 1) means that a lot of emphasis is put on the enforcement of the constraints. 
The test errors are averaged over the 23 splits and the error bars correspond to the 
standard deviation of the means. 

6 Conclusion 

We have extended a method for constructing invariant hyperplanes to the nonlinear 
case. We have shown results that are superior to the virtual SV method. The latter 
has recently broken the record on the NIST database which is the "gold standard" 
of handwritten digit benchmarks [5], therefore it appears promising to also try the 
new system on that task. For this propose, a large scale version of this method 
needs to be derived. The first idea we tried is to compute the kernel PCA map 
using only a subset of the training points. Encouraging results have been obtained 
on the lO-class USPS database (with the whole training set), but other methods 
are also currently under study. 
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