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Abstract 

We consider noisy Euclidean traveling salesman problems in the 
plane, which are random combinatorial problems with underlying 
structure. Gibbs sampling is used to compute average trajectories, 
which estimate the underlying structure common to all instances. 
This procedure requires identifying the exact relationship between 
permutations and tours. In a learning setting, the average trajec­
tory is used as a model to construct solutions to new instances 
sampled from the same source. Experimental results show that the 
average trajectory can in fact estimate the underlying structure and 
that overfitting effects occur if the trajectory adapts too closely to 
a single instance. 

1 Introduction 

The approach in combinatorial optimization is traditionally single-instance and 
worst-case-oriented. An algorithm is tested against the worst possible single in­
stance. In reality, algorithms are often applied to a large number of related instances, 
the average-case performance being the measurement of interest. This constitutes 
a completely different problem: given a set of similar instances, construct solutions 
which are good on average. We call this kind of problem multiple-instances and 
average-case-oriented. Since the instances share some information, it might be ex­
pected that this problem is simpler than solving all instances separately, even for 
NP-hard problems. 
We will study the following example of a multiple-instance average-case problem, 
which is built from the Euclidean travelings salesman problem (TSP) in the plane. 
Consider a salesman who makes weekly trips. At the beginning of each week, the 
salesman has a new set of appointments for the week, for which he has to plan 
the shortest round-trip. The location of the appointments will not be completely 
random, because there are certain areas which have a higher probability of contain­
ing an appointment, for example cities or business districts within cities. Instead 
of solving the planning problem each week from scratch, a clever salesman will try 
to exploit the underlying density and have a rough trip pre-planned, which he will 
only adapt from week to week. 
An idealizing formulization of this setting is as follows. Fix the number of ap­
pointments n E N. Let Xl, ... , Xn E ]R2 and (J E 114. Then, the locations of the 



appointments for each week are given as samples from the normally distributed 
random vectors (i E {1, ... ,n}) 

(1) 

The random vector (Xl, ... ,Xn ) will be called a scenario, sampled appointment 
locations (sampled) instance. The task consists in finding the permutation 7r E Sn 
which minimizes 7r I-t d7r (n)1f(l) + L~:ll d1f (i)1f(iH) , where dij := IIXi - Xj112' and 
Sn being the set of all bijective functions on the set {1, ... , n}. Typical examples 
are depicted in figure l(a)- (c). 
It turns out that the multiple-instance average-case setting is related to learning 
theory, especially to the theory of cost-based unsupervised learning. This relation­
ship becomes clear if one considers the performance measure of interest. The algo­
rithm takes a set of instances It, ... ,In as input and outputs a number of solutions 
Sl,···, Sn· It is then measured by the average performance (l/n) L~=l C(Sk, h), 
where C(s , I) denotes the cost of solution s on instance I. We now modify the 
performance measure as follows. Given a finite number of instances It, ... ,In, the 
algorithm has to construct a solution s' on a newly sampled instance I'. The perfor­
mance is then measured by the expected cost E (C (s' ,I')). This can be interpreted 
as a learning task. The instances 11 , ... ,In are then the training data, E(C(s', I')) 
is the analogue of the expected risk or cost, and the set of solutions is identified 
with the hypothesis class in learning theory. 
In this paper, the setting presented in the previous paragraph is studied with the 
further restriction that only one training instance is present. From this training in­
stance, an average solution is constructed, represented by a closed curve in the plane. 
This average trajectory is supposed to capture the essential structure of the under­
lying probability density, similar to the centroids in K-means clustering. Then, the 
average trajectory is used as a seed for a simple heuristic which constructs solutions 
on newly drawn instances. The average trajectories are computed by geometrically 
averaging tours which are drawn by a Gibbs sampler at finite temperature. This 
will be discussed in detail in sections 2 and 3. It turns out that the temperature 
acts as a scale or smoothing parameter. A few comments concerning the selection 
of this parameter are given in section 6. 
The technical content of our approach is reminiscent of the "elastic net" -approaches 
of Durbin and Willshaw (see [2], [5]) , but differs in many points. It is based on 
a completely different algorithmic approach using Gibbs sampling and a general 
technique for averaging tours. Our algorithm has polynomial complexity per Monte 
Carlo step and convergence is guaranteed by the usual bounds for Markov Chain 
Monte Carlo simulation and Gibbs sampling. Furthermore, the goal is not to provide 
a heuristic for computing the best solution, but to extract the relevant statistics of 
the Gibbs distribution at finite temperatures to generate the average trajectory, 
which will be used to compute solutions on future instances. 

2 The Metropolis algorithm 

The Metropolis algorithm is a well-known algorithm which simulates a homogeneous 
Markov chain whose distribution converges to the Gibbs distribution. We assume 
that the reader is familiar with the concepts, we give here only a brief sketch of the 
relevant results and refer to [6], [3] for further details. 
Let M be a finite set and f: M -+ lit The Gibbs distribution at temperature T E Il4 
is given by (m E M) 

9T(m) := exp( - f(m)/T~ . 
Lm/EM exp( - f(m )/T) 

(2) 



The Metropolis algorithm works as follows. We start with any element m E M and 
set Xl +- m. For i ~ 2, apply a random local update m':= ¢(Xi). Then set 

with probability min {I, exp( -(f(Xi) - f(m'))/T)} 
else 

(3) 

This scheme converges to the Gibbs distribution if certain conditions on ¢ are met. 
Furthermore, a L2-law of large numbers holds: For h: M --t ]R, ~ L:~=l h(Xk ) --t 

L:mEM gT(m)h(m) in L2. For TSP, M = Sn and ¢ is the Lin-Kernighan two-change 
[4], which consists in choosing two indexes i, j at random and reversing the path 
between the appointments i and j. Note that the Lin-Kernighan two-change and 
its generalizations for neighborhood search are powerful heuristic in itself. 

3 Averaging Tours 

Our goal is to compute the average trajectory, which should grasp the underlying 
structure common to all instances, with respect to the Gibbs measure at non-zero 
temperature T . The Metropolis algorithm produces a sequence of permutations 
7rl, 7r2, ... with P{ 7rn = .} --t gT(.) for n --t 00. Since permutations cannot be 
added, we cannot simply compute the empirical means of 7rn . Instead, we map 
permutations to their corresponding trajectories. 

Definition 1 (trajectory) The trajectory of 7r E Sn given n points Xl, ... ,Xn is a 
mapping r( 7r): {I, ... , n} --t ]R2 defined by r( 7r) (i) := X1C(i). The set of all trajec­
tories (for all sets of n points) is denoted by Tn (this is the set of all mappings 
T {I , ... , n} --t ]R2 ). 

Addition of trajectories and multiplication with scalars can be defined pointwise. 
Then it is technically possible to compute t L:~=l r(7rk). Unfortunately, this does 
not yield the desired results , since the relation between permutations and tours is 
not one-to-one. For example, the permutation obtained by starting the tour at a 
different city still corresponds to the same tour . We therefore need to define the 
addition of trajectories in a way which is independent of the choice of permutation 
(and therefore trajectory) to represent the tour. We will study the relationship 
between tours and permutations first in some detail, since we feel that the concepts 
introduced here might be generally useful for analyzing combinatorial optimization 
problems. 

Definition 2 (tour and length of a tour) Let G = (V, E) be a complete (undirected) 
graph with V = {I, ... ,n} and E = (~). A subset tEE is called a tour iff It I = n, 
for every v E V, there exist exactly two el, e2 E t such that v E el and v E e2, 
and (V, t) is connected. Given a symmetric matrix (dij ) of distances, the length of 
a tour t is defined by C(t) := L:{i,j} Et dij . 

The tour corresponding to a permutation 7r E Sn is given by 

n-l 
t(7r) :={ {7r(I), 7r(n)}} U U {{7r(i) ,7r(i + I)}}. (4) 

i=l 

If t(7r) = t for a permutation 7r and a tour t, we say that 7r represents t. We 
call two permutations 7r , 7r' equivalent, if they represent the same tour and write 
7r ,...., 7r'. Let [7r] denote the equivalence class of 7r as usual. Note that the length of 
a permutation is fully determined by its equivalence class. Therefore, ,...., describes 
the intrinsic symmetries of the TSP formulated as an optimization problem on Sn , 
denoted by TSP(Sn). 
We have to define the addition EB of trajectories such that the sum is independent of 
the representation. This means that for two tours h, t2 such that h is represented 



by 'lf1, 'If~ and t2 by 'lf2, 'If~ it holds that f('lf1) EB f('lf2) ~ f('lfD EB f('If~). The idea 
will be to normalize both summands before addition. We will first study the exact 
representation symmetry of TSP(Sn) ' 

The TSP(Sn) symmetry group Algebraically speaking, Sn is a group with 
concatenation of functions as multiplication, so we can characterize the equivalence 
classes of ~ by studying the set of operations on a permutation which map to the 
same equivalent class. We define a group action of Sn on itself by right translation 
('If, 9 E Sn): 

" . " : Sn x Sn -+ Sn, g. 'If:= 'lfg- 1. (5) 

Note that any permutation in Sn can be mapped to another by an appropriate 
group action (namely 'If -+ 'If' by ('If,-l'lf) . 'If.), such that the group action of Sn on 
itself suffices to study the equivalence classes of ~. 
For certain 9 E Sn, it holds that t(g· 'If) = t('If). We want to determine the maximal 
set H t of elements which keeps t invariant. It even holds that H t is a subgroup 
of Sn: The identity is trivially in H t . Let g, h be t-invariant , then t((gh-1) . 'If) = 
t(g ·(h- 1 . 'If)) = t(h- 1 . 'If) = t(h ·(h- 1 . 'If) = t( 'If). H t will be called the symmetry 
group of TSP(Sn) and it follows that ['If] = H t · 'If :={h · 'If I hE Hd. 
The shift u and reversal (2 are defined by (i E {I , ... , n} ) 

(.) . __ {i + 1 i < n, 
u z. 1 . , z = n 

(2(i) :=n + 1- i, (6) 

and set H :=((2, u), the group generated by u and (2. It holds that (this result is an 
easy consequence of (2(2 = id{l , ... ,n}, (2U = u-1(2 and un = id{l , ... ,n}) 

H = {uk IkE {I, ... , n}} U {(2uk IkE {l, ... ,n}}. (7) 

The fundamental result is 

Theorem 1 Let t be the mapping which sends permutations to tours as defined in 
(4). Then, H t = H , where H t is the set of all t-invariant permutations and H is 
defined in (7). 

Proof: It is obvious that H ~ H t . Now, let h- 1 E H t . We are going to prove 
that t-invariant permutations are completely defined by their values on 1 and 2. 
Let hE H t and k:= h(l) . Then, h(2) = u(k) or h(2) = u - 1(k), because otherwise, 
h would give rise to a link {{'If(h(1),'If(h(2»}} 1. t('If) . For the same reason, h(3) 
must be mapped to u ±2(k). Since h must be bijective, h(3) =I- h(l) , so that the sign 
of the exponent must be the same as for h(2). In general, h(i) = u±(i- 1l(k). Now 
note that for i,k E {l , ... ,n} , u i(k) = uk(i) and therefore, 

{
u k- 1 if h(i) = ui-1 (k) 

h= (2un-k ifh(i)=u-i+1(k)' D 

Adding trajectories We can now define equivalence for trajectories. First define 
a group action of Sn on Tn analogously to (5): the action of h E Ht on "( E Tn is 
given by h · "( := "( 0 h- 1 . Furthermore, we say that "( ~ 1} , if H t · "( = H t ·1}. 
Our approach is motivated geometrically. We measure distances between trajectories 
as follows. Let d: ]R2 x ]R2 -+ Il4 be a metric. Then define h, 1} E Tn) 

dh,1}):= 2::=1 dh(k),1}(k). (8) 

Before adding two trajectories we will first choose equivalent representations "(', 1}' 

which minimize d( "(' , 1}'). Because of the results presented so far, searching through 



all equivalent trajectories is computationally tractable. Note that for h E H t , it 
holds that d( h . ,,(, h . rJ) = db, rJ) as h only reorders the summands. It follows that 
it suffices to change the representations only for one argument, since d(h· ,,(, i· rJ) = 
db, h - 1i· rJ)· So the time complexity of one addition reduces to 2n computation of 
distances which involve n subtractions each. 

The normalizing action is defined by b, rJ E Tn) 

n , 1J := argmin d( ,,(, n . rJ)· 
n EH t 

Assuming that the normalizing action is unique1 , we can prove 

(9) 

Theorem 2 Let ,,(, rJ be two trajectories, and n , 1J the unique normalizing action as 
defined in (9). Then, the operation 

"( EB rJ := "( + n , 1J . rJ (10) 
is representation invariant. 

Proof: Let "(I = g. ,,(, rJl = h· rJ for g, h E H t . We claim that n ,I1J1 = gn' 1Jh-1. 
The normalizing action is defined by 

n,I1J1 = argmin db/, n l . rJl) = argmin d(g . ,,( , nih· rJ) = argmin db , g-l n lh· rJ), 
n l EHt n l EH t n l EH t 

(11) 
by inserting g-l parallelly before both arguments in the last step. Since the nor­
malizing action is unique, it follows that for the n l realizing the minimum it holds 
that g-ln l h = n , 1J and therefore n l = n , I1J1 = gn' 1Jh-1. Now, consider the sum 

which proves the representation independence. 0 

The sum of more than two trajectories can be defined by normalizing everything 
with respect to the first summand, so that empirical sums t EB~=l f(?ri) are now 
well-defined. 

4 Inferring Solutions on New Instances 

We transfer a trajectory to a new set of appointments Xl, .. . ,Xn by computing the 
relaxed tour using the following finite-horizon adaption technique: 

First of all, passing times ti for all appointments are computed. We extend the 
domain of a trajectory "( from {I, ... , n} to the interval [1, n + 1) by linear interpo­
lation. Then we define ti such that "((ti) is the earliest point with minimal distance 
between appointment Xi and the trajectory. The passing times can be calculated 
easily by simple geometric considerations. The permutation which sorts (ti)~l is 
the relaxed solution of"( to (Xi) . 

In a post-processing step, self-intersections are removed first. Then, segments of 
length w are optimized by exhaustive search. Let ?r be the relaxed solution. The 
path from ?rei) to ?r(i + w + 2) (index addition is modulo n) is replaced by the 
best alternative through the appointments ?r(i + 1), ... , ?r(i + w + 1). Iterate for all 
i E {I , . . . , n} until there is no further improvement. Since this procedure has time 
complexity w!n, it can only be done efficiently for small w. 

lOtherwise, perturb the locations of the appointments by infinitesimal changes. 



5 Experiments 

For experiments, we used the following set-up: We took the 11.111-norm to determine 
the normalizing action. Typical sample-sizes for the Markov chain Monte Carlo 
integration were 1000 with 100 steps in between to decouple consecutive samples. 
Scenarios were modeled after eq. (1), where the Xi were chosen to form simple 
geometric shapes. 
Average trajectories for different temperatures are plotted in figures l(a)- (c). As 
the temperature decreases, the average trajectory converges to the trajectory of a 
single locally optimal tour. The graphs demonstrate that the temperature T acts 
as a smoothing parameter. 
To estimate the expected risk of an average trajectory, the post-processed relaxed 
(PPR) solutions were averaged over 100 new instances (see figure l(d)-(g)) in order 
to estimate the expected costs. The costs of the best solutions are good approx­
imations, within 5% of the average minimum as determined by careful simulated 
annealing. An interesting effect occurs: the expected costs have their minimum at 
non-zero temperature. The corresponding trajectories are plotted in figure l(e),(f). 
They recover the structure of the scenario. In other words, average trajectories com­
puted at temperatures which are too low, start to overfit to noise present only in 
the instance for which they were computed. So computation of the global optimum 
of a noisy combinatorial optimization problem might not be the right strategy, be­
cause the solutions might not reflect the underlying structure. Averaging over many 
suboptimal solutions provides much better statistics. 

6 Selection of the Temperature 

The question remains how to select the optimal temperature. This problem is es­
sentially the same as determining the correct model complexity in learning theory, 
and therefore no fully satisfying answer is readily available. The problem is nev­
ertheless suited for the application of the heuristic provided by the empirical risk 
approximation (ERA) framework [1], which will be briefly sketched here. 
The main idea of ERA is to coarse-grain the set of hypotheses M by treating 
hypotheses as equivalent which are only slightly different. Hypotheses whose £1 
mutual distance (defined in a similar fashion as (8)) is smaller than the parameter 
"( E Il4 are considered statistically equivalent. Selecting a subset of solutions such 
that £l -spheres of radius "( cover M results in the coarse-grained hypothesis set 
M,. VC-type large deviation bounds depending on the size of the coarse-grained 
hypothesis class can now be derived: 

( n(c - "()2 ) p{ C2 (m"! ) - min C2 (m) > 2c} :::; 21M"! 1 sup exp - ( )' 
mEM mEM., am + c c - "( 

(13) 

am depending on the distribution. The bound weighs two competing effects. On 
the one hand, increasing "( introduces a systematic bias in the estimation. On the 
other hand, decreasing "( increases the cardinality of the hypothesis class. Given a 
confidence J > 0, the probability of being worse than c > 0 on a second instance and 
"( are linked. So an optimal coarsening "( can be determined. ERA then advocates 
to either sample from the ,,(-sphere around the empirical minimizer or average over 
these solutions. 
Now it is well known, that the Gibbs sampler is concentrated on solutions whose 
costs are below a certain threshold. Therefore, the ERA is suited for our approach. 
In the relating equation the log cardinality of the approximation set occurs, which 
is usually interpreted as micro canonical entropy. This relates back to statistical 
physics, the starting point of our whole approach. Now interpreting "( as energy, 
we can compute the stop temperature from the optimal T Using the well-known 



relation from statistical physics ~ee:t:~:: = T - 1 , we can derive a lower bound on 
the optimal temperature depending on variance estimates of the specific scenario 
given. 

7 Conclusion 

In reality, optimization algorithms are often applied to many similar instances. We 
pointed out that this can be interpreted as a learning problem. The underlying 
structure of similar instances should be extracted and used in order reduce the 
computational complexity for computing solutions to related instances. 
Starting with the noisy Euclidean TSP, the construction of average tours is studied 
in this paper, which involves determining the exact relationship between permuta­
tion and tours, and identifying the intrinsic symmetries of the TSP. We hope that 
this technique might prove to be useful for other applications in the field of averag­
ing over solutions of combinatorial problems. The average trajectories are able to 
capture the underlying structure common to all instances. A heuristic for construct­
ing solutions on new instances is proposed. An empirical study of these procedures 
is conducted with results satisfying our expectations. 
In terms of learning theory, overfitting effects can be observed. This phenomenon 
points at a deep connection between combinatorial optimization problems with noise 
and learning theory, which might be bidirectional. On the one hand, we believe that 
noisy (in contrast to random) combinatorial optimization problems are dominant 
in reality. Robust algorithms could be built by first estimating the undistorted 
structure and then using this structure as a guideline for constructing solutions 
for single instances. On the other hand, hardness of efficient optimization might be 
linked to the inability to extract meaningful structure. These connections, which are 
subject of further studies, link statistical complexity to computational complexity. 
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Figure 1: (a) Average trajectories at different temperatures for n = 100 appoint­
ments on a circle with a 2 = 0.03. (b) Average trajectories at different temperatures, 
for multiple Gaussian sources, n = 50 and a2 = 0.025. (c) The same for an instance 
with structure on two levels. (d) Average tour length of the post-processed relaxed 
(PPR) solutions for the circle instance plotted in (a). The PPR width was w = 5. 
The average fits to noise in the data if the temperature is too low, leading to over­
fitting phenomena. Note that the average best solution is :s: 16.5. (e) The average 
trajectory with the smallest average length of its PPR solutions in (d). (f) Average 
tour length as in (d). The average best solution is :s: 10.80. (g) Lowest temperature 
trajectory with small average PPR solution length in (f). 


