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Abstract 

The way groups of auditory neurons interact to code acoustic in­
formation is investigated using an information theoretic approach. 
We develop measures of redundancy among groups of neurons, and 
apply them to the study of collaborative coding efficiency in two 
processing stations in the auditory pathway: the inferior colliculus 
(IC) and the primary auditory cortex (AI). Under two schemes for 
the coding of the acoustic content, acoustic segments coding and 
stimulus identity coding, we show differences both in information 
content and group redundancies between IC and AI neurons. These 
results provide for the first time a direct evidence for redundancy 
reduction along the ascending auditory pathway, as has been hy­
pothesized for theoretical considerations [Barlow 1959,2001]. The 
redundancy effects under the single-spikes coding scheme are signif­
icant only for groups larger than ten cells , and cannot be revealed 
with the redundancy measures that use only pairs of cells. The 
results suggest that the auditory system transforms low level rep­
resentations that contain redundancies due to the statistical struc­
ture of natural stimuli , into a representation in which cortical neu­
rons extract rare and independent component of complex acoustic 
signals, that are useful for auditory scene analysis. 



1 Introduction 

How do groups of sensory neurons interact to code information and how do these 
interactions change along the ascending sensory pathways? According to the a 
common view, sensory systems are composed of a series of processing stations, 
representing more and more complex aspects of sensory inputs. The changes in 
representations of stimuli along the sensory pathway reflect the information pro­
cessing performed by the system. Several computational principles that govern 
these changes were suggested, such as information maximization and redundancy 
reduction [2, 3, 11]. In order to investigate such changes in practice, it is neces­
sary to develop methods to quantify information content and redundancies among 
groups of neurons, and trace these measures along the sensory pathway. 

Interactions and high order correlations between neurons were mostly investigated 
within single brain areas on the level of pairs of cells (but also for larger groups of 
cells [9]) showing both synergistic and redundant interactions [8, 10, 21, 6, 7, 13]. 
The current study develops information theoretic redundancy measures for larger 
groups of neurons , focusing on the case of stimulus-conditioned independence. We 
then compare these measures in electro-physiological recordings from two auditory 
stations: the auditory mid-brain and the primary auditory cortex. 

2 Redundancy measures for groups of neurons 

To investigate high order correlations and interactions within groups of neurons 
we start by defining information measures for groups of cells and then develop 
information redundancy measures for such groups. The properties of these measures 
are then further discussed for the specific case of stimulus-conditioned independence. 

Formally, the level of independence of two variables X and Y is commonly quantified 
by their mutual information (MI) [17,5]. This well known quantity, now widely used 
in analysis of neural data, is defined by 

J(X; Y) = DKL[P(X, Y)IIP(X)P(Y)] = ~p(x, y)log (:~~~~~)) (1) 

and measures how close the joint distribution P(X, Y) is to the factorization by the 
marginal distributions P(X)P(Y) (DKL is the Kullback Leiber divergence [5]). 

For larger groups of cells, an important generalized measure quantifies the infor­
mation that several variables provide about each other. This multi information 
measure [18] is defined by 

(2) 

Similar to the mutual information case, the multi information measures how close 
the joint distribution is to the factorization by the marginals. It thus vanishes when 
variables are independent and is otherwise positive. 

We now turn to develop measures for group redundancies. Consider first the simple 
case of a pair of neurons (Xl, X 2 ) conveying information about the stimulus S. In 
this case, the redundancy-synergy index ([4 , 7]) is defined by 

(3) 



Intuitively, RSpairs measures the amount of information on the stimulus S gained 
by observing the joint distribution of both Xl and X 2 , as compared with observing 
the two cells independently. In the extreme case where Xl = X 2 , the two cells 
are completely redundant and provide the same information about the stimulus, 
yielding RSpairs = I(Xl' X 2 ; S) - I(Xl ; S) - I(X2 ; S) = -I(Xl; S), which is always 
non-positive. On the other hand, positive RSpairs values testify for synergistic 
interaction between Xl and X 2 ([8, 7, 4]). 

For larger groups of neurons, several different measures of redundancy-synergy may 
be considered, that encompass different levels of interactions. For example, one can 
quantify the residual information obtained from a group of N neurons compared 
to all its N - 1 subgroups. As with inclusion-exclusion calculations this measure 
takes the form of a telescopic sum: RSNIN-l = I(XN; S) - L{XN-l} I(XN-\ S) + 
... + (_l)N-l L{Xd I(Xi ; S), where {Xk} are all the subgroups of size k out of the 

N available neurons. Unfortunately, this measure involves 2N information terms, 
making its calculation infeasible even for moderate N values 1. 

A different RS measure quantifies the information embodied in the joint distribution 
of N neurons compared to that provided by N single independent neurons, and is 
defined by 

N 

RSNll = I(Xl ' ... , X N; S) - 2..: I(Xi ; S) (4) 
i=l 

Interestingly, this synergy-redundancy measure may be rewritten as the difference 
between two multi-information terms 

N 

I(Xl ' ... , X N; S) - 2..: I(Xi ; S) = (5) 
i = l 

N 

H(Xl' ... ,XN) - H(Xl' ... , XNIS) - 2..: H(Xi ) - H(XiIS) = 
i=l 

I(Xl ; ... ; XNIS) - I(Xl ; ... ;XN) 

where H(X) = - L xP(x)log(P(x)) is the entropy of X 2 . We conclude that the 
index RSNll can be separated into two terms: one that is always non-negative, 
and measures the coding synergy, and the second which is always non-positive and 
quantifies the redundancy. These two terms correspond to two types of interactions 
between neurons: The first type are within-stimulus correlations (sometimes termed 
noise correlations) that emerge from functional connections between neurons and 
contribute to synergy. The second type are between stimulus correlations (or across 
stimulus correlations) that reflect the fact that the cells have similar responses per 
stimulus, and contribute to redundancy. Being interested in the latter type of 
correlations, we limit the discussion to the redundancy term -I(Xl; ... ; XN)' 

Formulating RSNll as in equation 5 proves highly useful when neural activities 

are independent given the stimulus P(XIS) = II~l P(XiIS). In this case, the 
first (synergy) term vanishes , thus limiting neural interactions to the redundant 

lOur results below suggest that some redundancy effects become significant only for 
groups larger than 10-15 cells. 

2When comparing redundancy in different processing stations, one must consider the 
effects of the baseline information conveyed by single neurons. We thus use the normalized 
redundancy (compare with [15] p.315 and [4]) defined by !iSNll = RSNldI(Xl; ... ; X N; S) 



regime. More importantly, under the independence assumption we only have to 
estimate the marginal distributions P(XiIS = s) for each stimulus s instead of 
the full distribution P(XIS = s). It thus allows to estimate an exponentially 
smaller number of parameters, which in our case of small sample sizes, provides 
more accurate information estimates. This approximation makes it possible to 
investigate redundancy among considerably larger groups of neurons than the 2-3 
neuron groups considered previously in the literature. 

How reasonable is the conditional-independence approximation ? It is a good ap­
proximation whenever neuronal activity is mostly determined by the presented stim­
ulus and to a lesser extent by interactions with nearby neurons. A possible example 
is the high input regime of cortical neurons receiving thousands of inputs, where 
a single input has only a limited influence on the activity of the target cell. The 
experimental evidence in this regard is however mixed (see e.g.[9]). One should note 
however, that stimulus-conditioned independence is implicitly assumed in analysis 
of non-simultaneously recorded data. 

To summarize, the stimulus-conditioned independence assumption limits interac­
tions to the redundant regime, but allows to compare the extent of redundancy 
among large groups of cells in different brain areas. 

3 Experimental Methods 

To investigate redundancy in the auditory pathway, we analyze extracellular record­
ings from two brain areas of gas-anesthetized cats: 16 cells from the Inferior Col­
liculus (Ie) - the third processing station of the ascending auditory pathway - and 
19 cells from the Primary Auditory Cortex (AI) - the fifth station. Neural activity 
was recorded non-simultaneously from a total of 6 different animals responding to 
a set of complex natural and modified stimuli. Because cortical auditory neurons 
respond differently to simple and complex stimuli [12 , 1], we refrain from using ar­
tificial over-simplified acoustic stimuli but instead use a set of stimuli based on bird 
vocalizations which contains complex 'real-life' acoustic features. A representative 
example is shown in figure 1. 
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Figure 1: A representative stimulus containing a short bird vocalization recorded in 
a natural environment. The set of stimuli consisted of similar natural and modified 
recordings. A. Signal in time domain B. Signal in frequency domain. 

4 Experimental Results 

In practice, in order to estimate the information conveyed by neural activity from 
limited data, one must assume a decoding procedure, such as focusing on a simple 
statistic of the spike trains that encompasses some of its informative properties. In 



this paper we consider two extreme cases: coding short acoustic segments with sin­
gle spikes and coding the stimulus identity with spike counts in a long window. In 
addition, we estimated information and redundancy obtained with two other statis­
tics. First, the latency of the first spike after stimulus onset , and secondly, a statistic 
which generalizes the counts statistics for a general renewal process [19]. These cal­
culations yielded higher information content on average, but similar redundancies 
as presented below. Their detailed results will be reported elsewhere. 
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Figure 2: A. Information about stimulus frames as a function of number of cells. 
Information calculation was repeated for several subgroups of each size, and with 
several random seed initializations. The dark curve depicts the expected information 
provided by independent neurons (this expected curve is corrected for saturation 
effects [16] and is thus sub linear). The curved line depicts average information 
from joint distribution of sets of neurons Mean[J(Xl' ... Xk; S)]. All information 
estimations were corrected for small-samples bias by shuffling methods [14] . B. 
Fractional redundancy (difference of the mutual information from the expected 
baseline information divided by the baseline) as a function of number of neurons. 

4.1 Coding acoustics with single spikes 

The current section focuses on the relation between single spikes and short windows 
of the acoustic stimuli shortly preceding them (which we denote as frames). As the 
set of possible frames is very large and no frame actually repeats itself, we must 
first pre-process the stimuli to reduce frames dimensionality. 

To this end, we first transformed the stimuli into the frequency domain (roughly ap­
proximating the cochlear transformation) and then extracted overlapping windows 
of 50 millisecond length, with 1 millisecond spacing. This set was clustered into 
32 representatives, using a metric that groups together acoustic segments with the 
same spectro-temporal energy structure. This representation allowed us to estimate 
the joint distribution (under the stimulus-conditioned independence assumption) of 
cells' activity and stimuli, for groups of cells of different sizes. Figure 2A shows the 
mutual information between spikes and stimulus frames as a function of the number 
of cells for both AI and Ie neurons. Ie neurons convey high information but largely 
deviate from the information expected for independent neurons. On the other hand, 
AI neurons provide an order of magnitude less information than Ie cells but their 
information sums almost linearly, as expected from independent neurons. 

The difference between an information curve and its linear baseline measures the 
redundancy RSNII of equation 5. Figure 2B presents the normalized redundancy as 
a function of number of cells, showing that Ie cells are significantly more redundant 



than AI cells. 
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Figure 3: Distribution of pairs (A.) and triplets (B.) normalized redundancies. AI 
cells (light bars) are significantly more independent than Ie cells (dark bars). Spike 
counts were collected over a window that maximizes mean single cells MI. Number 
of bins in counts-histogram was optimized separately for every cell. Information 
estimations were corrected for small-samples bias by shuffling methods [14]. 

4.2 Coding stimuli by spike counts 

We now turn to investigate a second coding paradigm, and calculate the informa­
tion conveyed by AI and Ie spike counts about the identity of the presented 
stimulus. To this end, we calculate a histogram of spike counts and estimate the 
counts ' distribution as obtained from repeated presentations of the stimuli. 

The distribution of fractional redundancy in pairs of AI and Ie neurons is presented 
in figure 3A, and that of triplets in figure 3B 3 . As in the case of coding with 
single spikes, single AI cells convey on average less information about the stimulus. 
However, they are also more independent, thus making it possible to gain more 
information from groups of neurons. Ie neurons on the other hand, provide more 
information when considered separately but are more redundant. 

As in the case of coding acoustics with single spikes, single Ie cells provide more 
information than AI cells (data not shown) but this time AI cells convey half the 
information that Ie cells provide, while they convey ten times less information 
than Ie cells about acoustics. This suggests that AI cells poorly code the physical 
characteristics of the sound but convey information about its global properties. To 
illustrate the high information provided by both sets , we trained a neural network 
classifier that predicts the identity of the presented stimulus according to spike 
counts of a limited set of neurons. Figure 4 shows that both sets of neurons achieve 
considerable prediction accuracy, but Ie neurons obtain average accuracy of more 
than 90 percent already with five cells , while the average prediction accuracy using 
cortical neurons rises continuously 4. 

3Unlike the binary case of single spikes, the limited amount of data prevents a robust 
estimation of information from spike counts for more than triplets of cells. 

4The probability of accurate prediction is exponentially related to the input-output 
mutual information, via the relation Pcorrect = exp( -missing nats) yielding Mlnats = 
In(no. of stimuli) + In(Pcorrect). Classification thus provides lower bounds on information 
content . 



Figure 4. Prediction accuracy of stim­
ulus identity as a function of number of 
Ie (upper curve) and AI (lower curve) 
cells used by the classifier. Error bars 
denote standard deviation across sev­
eral subgroups of the same size. For 
each subgroup, a one-hidden layer neu­
ral network was trained separately for 
each stimulus using some stimulus pre­
sentations as a training set and the rest 
for testing. Performance reported is 
for the testing set. 

5 Discussion 
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We have developed information theoretic measures of redundancy among groups of 
neurons and applied them to investigate the collaborative coding efficiency in the 
auditory modality. Under two different coding paradigms, we show differences in 
both information content and group redundancies between Ie and cortical auditory 
neurons. Single Ie neurons carry more information about the presented stimulus, 
but are also more redundant. On the other hand, auditory cortical neurons carry 
less information but are more independent, thus allowing information to be summed 
almost linearly when considering groups of few tens of neurons. The results provide 
for the first time direct evidence for redundancy reduction along the ascending 
auditory pathway, as has been hypothesized by Barlow [2, 3]. The redundancy 
effects under the single-spikes coding paradigm are significant only for groups larger 
than ten cells, and cannot be revealed with the standard redundancy measures that 
use only pairs of cells. 

Our results suggest that transformations leading to redundancy reduction are not 
limited to low level sensory processing (aimed to reduce redundancy in input statis­
tics) but are applied even at cortical sensory stations. We suggest that an essential 
experimental prerequisite to reveal these effects is the use of complex acoustic stim­
uli whose processing occurs at high level processing stations. 

The above findings are in agreement with the view that along the ascending sensory 
pathways, the number of neurons increase, their firing rates decrease, and neurons 
become tuned to more complex and independent features. Together, these suggest 
that the neural representation is mapped into a representation with higher effective 
dimensionality. Interestingly, recent advances in kernel-methods learning [20] have 
shown that nonlinear mapping into higher dimension and over-complete represen­
tations may be useful for learning of complex classifications. It is therefore possible 
that such mappings provide easier readout and more efficient learning in the brain. 
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