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Abstract 

The partition function for a Boltzmann machine can be bounded 
from above and below. We can use this to bound the means and 
the correlations. For networks with small weights, the values of 
these statistics can be restricted to non-trivial regions (i.e. a subset 
of [-1 , 1]). Experimental results show that reasonable bounding 
occurs for weight sizes where mean field expansions generally give 
good results. 

1 Introduction 

Over the last decade, bounding techniques have become a popular tool to deal with 
graphical models that are too complex for exact computation. A nice property of 
bounds is that they give at least some information you can rely on. For instance, 
one may find that a correlation is definitely between 0.4 and 0.6. An ordinary ap­
proximation might be more accurate, but in practical situations there is absolutely 
no warranty for that. 

The best known bound is probably the mean field bound , which has been described 
for Boltzmann machines in [1] and later for sigmoid belief networks in [2]. Apart 
from its bounding properties, mean field theory is a commonly used approximation 
technique as well. Recently this first order bound was extended to a third order 
approximation for Boltzmann machines and sigmoid belief networks in [3] and [4], 
where it was shown that this particular third order expansion is still a bound. 

In 1996 an upper bound for Boltzmann machines was described in [5] and [6]. In the 
same articles the authors derive an upper bound for a special case of sigmoid belief 
networks: the two-layered networks. In this article we will focus solely on Boltzmann 
machines, but an extension to sigmoid belief networks is quite straightforward. 

This article is organized as follows: In section 2 we start with the general theory 
about bounding t echniques. Later in that section the upper and lower bound are 
briefly described. For a full explanation we refer to the articles mentioned before. 
The section is concluded by explaining how these bounds on the partition function 
can be used to bound means and correlations. In section 3 results are shown for 
fully connected Boltzmann machines, where size of weights and thresholds as well as 
network size are varied. In section 4 we present our conclusions and outline possible 
extensions. 



2 Theory 

There exists a general method to create a class of polynomials of a certain order, 
which all bound a function of interest, fo(x). Such a class of order 2n can be 
found if the 2n-th order derivative of fo(x), written as hn(x), can be bounded by 
a constant . When this constant is zero , the class is actually of order 2n-1. It turns 
out that this class is parameterized by n free parameters. 

Suppose we have a function b2k for some integer k which bounds the function 12k 
from below (an upper bound can be written as a lower bound by using the negative 
of both functions). Thus 

(1) 

Now construct the primitive functions 12k -1 and b2k -1 such that 12k - 1 (p) = 
b2k- 1(p) for a free to choose value for p. This constraint can always be achieved by 
adding an appropriate constant to the primitive function b2k - 1 . It is easy to prove 
that 

{ 12k -1 (x) :S b2k -1 (x) 
12k -1 (x) 2: b2k -1 (x) 

or in shorthand notation hk-1(x) § b2k - 1(X). 

for x < p 
for x 2: p (2) 

If we repeat this procedure and construct the primitive functions hk-2 and b2k - 2 
such that hk-2(p) = b2k - 2(p) for the same p, one can verify that 

Vx hk-2(x) 2: b2k - 2(X) (3) 
Thus given a bound 12k (x) 2: b2k (x) we can construct a class of bounding functions 
for hk-2 parameterized by p. 

Since we assumed hn (x) can be bounded from below by a constant , we can apply the 
procedure n times and we finally find fa (x) 2: bo (x), where bo (x) is parameterized 
by n free parameters. This procedure can be found in more detail in [4]. 

2.1 A third order lower bound for Boltzmann machines 

Boltzmann machines are stochastic neural networks with N binary valued neurons , 
Si, which are connected by symmetric weights Wij. Due to this symmetry the 
probability distribution is a Boltzmann-Gibbs distribution which is given by (see 
also [7]) 

p (siB, w) = ~ exp (~L. WijSiSj + L BiSi) = ~ exp (-E (s, B, w)) (4) 
'J ' 

where the Bi are threshold values and 

Z (B , w) = L exp ( - E (s, B, w)) (5) 
all S 

is the normalization known as the partition function. 

This partition function is especially important, since statistical quantities such as 
m eans and correlations can be directly derived from it. For instance , the m eans can 
be computed as 

(sn) = LP (siB, w) Sn = L P (s, Sn =+l IB, w) - P (s, Sn = - l iB , w) 
all S a ll s/sn 

Z+ (B, w) - Z_ (B, w) 
Z (B, w) 

(6) 



where Z+ and Z_ are partition functions over a network with Sn clamped to +1 
and -1 , respectively. 

This explains why the objective of almost any approximation method is the partition 
function given by equation 5. In [3] and [4] it is shown that the standard mean field 
lower bound can be obtained by applying the linear bound 

(7) 

to all exponentially many terms in the sum. Since J.l may depend on S, one can 
choose J.l (s) = J.l i Si + J.lo , which leads to the standard mean field equations, where 
the J.li turn out to be the local fields. 

Moreover, the authors show that one can apply the procedure of 'upgrading bounds' 
(which is described briefly at the beginning of this section) to equation 7, which 
leads to the class of third order bounds for eX. This is achieved in the following 
way: 

'r/X,V h(x) = eX 2': eV (1 + x - v) = b2(x) 

h(x)=ex'§ell-+ev ((1+J.l-v)(x-J.l)+~(x-J.l) 2) =bdx) (8) 

'r/X ,Il- ,A fo(x) = eX 2': ell- { 1 + x - J.l + eA C ; >.. (x - J.l)2 + ~ (x - J.l)3) } = bo(x) 

with>" = v - J.l. 

In principle, this third order bound could be maximized with respect to all the free 
parameters, but here we follow the suggestion made in [4] to use a mean field opti­
mization , which is much faster and generally almost as good as a full optimization. 
For more details we refer to [4]. 

2.2 An upper bound 

An upper bound for Boltzmann machines has been described in [5] and [6]1. Basi­
cally, this method uses a quadratic upper bound on log cosh x, which can easily be 
obtained in the following way: 

h(x) = 1 - tanh2 x::; 1 = b2(x) 
h(x) = tanh x ~ x - J.l + tanhJ.l = bdx) (9) 

1 2 
fa (x) = log cosh x ::; "2 (x - J.l) + (x - J.l) tanh J.l + log cosh J.l = bo (x) 

Using this bound, one can derive 

Z (e , w) = L exp (~L WijSiSj + L eiSi) 
all s ij i 

= ~ 2exp (lOg cosh (L WniSi + en)) exp (~ .L WijSiSj + L eiSi) 
all sisn , 'J i'n ' i'n 

::; L exp (~ L W~jSiSj + L e;Si + k) = ek . Z (e' , W') 
allsls n ij i'n ii'n 

(10) 

INote: The articles referred to, use Si E {O, I} instead of the +1/-1 coding used here. 



where k is a constant and el and Wi are thresholds and weights in a reduced network 
given by 

I 
Wij = Wij + WniWnj 

e;j = ei + Wni (en - J-Ln + tanhJ-Ln) (11) 

1 2 1 2 
k = "2 (en - J-L n + tanhJ-Ln) -"2 tanh J-Ln + log 2 cosh J-Ln 

Hence, equation 10 defines a recursive relation, where each step reduces the network 
by one neuron. Finally, after N steps, an upper bound on the partition function is 
found 2 . We did a crude minimization with respect to the free parameters J-L. A more 
sophisticated method can probably be found, but this is not the main objective of 
this article. 

2.3 Bounding means and correlations 

The previous subsections showed very briefly how we can obtain a lower bound , ZL, 
and an upper bound , ZU , for any partition function. We can use this in combination 
with equation 6 to obtain a bound on the means: 

ZL _ ZU Zu _ ZL 
(sn)L = + X -::::; (sn)::::; + y - = (snt (12) 

where X = ZU if the nominator is positive and X = ZL otherwise. For Y it is the 
opposite. The difference , (sn)U - (sn)L, is called the bandwidth. 

Naively, we can compute the correlations similarly to the means using 

(13) 

where the partition function is computed for all combinations Sn Sm. Generally, 
however, this gives poor results , since we have to add four bounds together , which 
leads to a bandwidth which is about twice as large as for the means. We can 
circumvent this by computing the correlations using 

(14) 

where we allow the sum in the partition functions to be taken over Sn , but fix Sm 
either to Sn or its negative. Finally, the computation of the bounds (SnSm)L and 
(snsmt is analogue to equation 12. 

There exists an alternative way to bound the means and correlations. One can write 

( ) _ Z+ - Z _ _ Z+/Z_ - 1 _ z - 1 - f ( ) 
Sn - - - - z 

Z+ + Z _ Z+/Z_ + 1 z + 1 

with z = Z+/Z_ , which can be bounded by 

ZL Zu 
----± < z < ----± 
Z~ - Z~ 

(15) 

(16) 

Since f (z) is a monotonically increasing function of z, the bounds on (Sn) are given 
by applying this function to the left and right side of equation 16. The correlations 
can be bounded similarly. It is still unknown whether this algorithm would yield 
better results than the first one, which is explored in this article. 

2The original articles show that it is not necessary to do all the N steps. However, 
since this is based on mixing approximation techniques with exact ca lculations, it is not 
used here as it would hide the real error the approximation makes. 
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Figure 1: Comparison of 1) the mean field lower bound, 2) the upper bound and 
3) the third order lower bound with the exact log partition function. The network 
was a fully connected Boltzmann machine with 14 neurons and (J'B = 0.2. The size 
of the weights is varied on the x-axis. Each point was averaged over 100 networks. 

3 Results 

In all experiments we used fully connected Boltzmann machines of which the thresh­
olds and weights both were drawn from a Gaussian with zero mean and standard 
deviation (J'B and (J'w/VN, respectively, where N is the network size. This is the so 
called sK-model (see also [8]). Generally speaking, the mean field approximation 
breaks down for (J'B = 0 and (J'w > 0.5, whereas it can be proven that any expansion 
based approximation is inaccurate when (J'w > 1 (which is the radius of convergence 
as in [9]). If (J'B #- 0 these maximum values are somewhat larger. 

In figure 1 we show the logarithm of the exact partition function , the first order 
or mean field bound, the upper bound (which is roughly quadratic) and the third 
order lower bound. The weight size is varied along the horizontal axis. One can 
see clearly that the mean field bound is not able to capture the quadratic form of 
the exact partition function for small weights due to its linear behaviour. The error 
made by the upper and third order lower bound is small enough to make non-trivial 
bounds on the means and correlations. 

An example of this bound is shown in figure 2 for the specific choice (J'B = (J'w = 0.4. 
For both the means and t he correlations a histogram is plotted for the upper and 
lower bounds computed with equation 12. Both have an average bandwidth of 
0.132, which is a clear subset of the whole possible interval of [-1 , 1]. 

In figure 3 the average bandwidth is shown for several values of (J'e and (J' w ' For 
bandwidths of 0.01,0.1 and 1 a line is drawn. We conclude that almost everywhere 
the bandwidth is non-trivially reduced and reaches practically useful values for (J'w 

less than 0.5. This is more or less equivalent to the region where the mean fi eld 
approximation performs well. That approximation , however , gives no information 
on how close it actually is to the exact value, whereas the bounding method limits 
it to a definit e region. 
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Figure 2: For the specific choice IJo = IJw = 0.4 thirty fully connected Boltzmann 
machines with 14 neurons were initialized and the bounds were computed. The two 
left panels show the distance between the lower bound and the exact means (left) 
and similarly for the upper bound (right). The right two panels show the distances 
of both bounds for the correlations. 
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Figure 3: In the left panel the average bandwidth is colour coded for the means , 
where IJo and IJw are varied in ten steps along the axes. The right panel shows 
the same for the correlations. For each IJo , IJw thirty fully connected Boltzmann 
machines were initialized and the bounds on all the means and correlations were 
computed. For three specific bandwidths a line is drawn. 
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Figure 4: For (Tw = 0.1, 0.3 and 0.5 the bandwidth for the correlations is shown 
versus the network size. (To = 0.3 in all cases, but the plots are nearly the same for 
other values. Please note the different scales for the y-axis. A similar graph for the 
means is not shown here, but it is roughly the same. The solid line is the average 
bandwidth over all correlations , whereas the dashed lines indicate the minimum and 
maximum bandwidth found. 

Unfortunately, the bounds have the unwanted property that the error scales badly 
with the size of the network. Although this makes the bounds unsuitable for very 
large networks , there is still a wide range of networks small enough to take advan­
tage of the proposed method and still much too large to be treated exactly. The 
bandwidth versus network size is shown in figure 4 for three values of (T w' Obviously, 
the threshold of practical usefulness is reached earlier for larger weights . 

Finally, we remark that the computation time for the upper bound is (') (N4) and 

(') (N 3 ) for the mean field and third order lower bound. This is not shown here. 

4 Conclusions 

In this article we combined two already existing bounds in such a way that not only 
the partition function of a Boltzmann machine is bounded from both sides , but also 
the means and correlations . This may seem superfluous, since there exist already 
several powerful approximation methods. Our method, however, can be used apart 
from any approximation technique and gives at least some information you can rely 
on. Although approximation techniques might do a good job on your data, you 
can never be sure about that. The method outlined in this paper ensures that the 
quantities of interest, the means and correlations, are restricted to a certain region. 

We have seen that , generally speaking, the results are useful for weight sizes where 
an ordinary mean field approximation performs well. This makes the method ap­
plicable to a large class of problems . Moreover, since many architectures are not 
fully connected, one can take advantage of that structure. At least for the upper 
bound it is shown already that this can improve computation speed and tightness . 
This would partially cancel the unwanted scaling with the network size. 

Finally, we would like to give some directions for further research. First of all, an 
extension to sigmoid belief networks can easily be done, since both a lower and an 
upper bound are already described. The upper bound, however , is only applicable to 
two layer networks. A more general upper bound can probably be found. Secondly 
one can obtain even better bounds (especially for larger weights) if the general 
constraint 

(17) 

is taken into account. This might even be extended to similar constraints, where 
three or more neurons are involved. 
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