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Abstract 

A new form of covariance modelling for Gaussian mixture models and 
hidden Markov models is presented. This is an extension to an efficient 
form of covariance modelling used in speech recognition, semi-tied co­
variance matrices. In the standard form of semi-tied covariance matrices 
the covariance matrix is decomposed into a highly shared decorrelating 
transform and a component-specific diagonal covariance matrix. The use 
of a factored decorrelating transform is presented in this paper. This fac­
toring effectively increases the number of possible transforms without in­
creasing the number of free parameters. Maximum likelihood estimation 
schemes for all the model parameters are presented including the compo­
nent/transform assignment, transform and component parameters. This 
new model form is evaluated on a large vocabulary speech recognition 
task. It is shown that using this factored form of covariance modelling 
reduces the word error rate. 

1 Introduction 

A standard problem in machine learning is to how to efficiently model correlations in multi­
dimensional data. Solutions should be efficient both in terms of number of model param­
eters and cost of the likelihood calculation. For speech recognition this is particularly 
important due to the large number of Gaussian components used, typically in the tens of 
thousands, and the relatively large dimensionality of the data, typically 30-60. 

The following generative model has been used in speech recognition 1 

X(T) W 

O(T) = F [ X~T) ] 

(1) 

(2) 

where X(T) is the underlying speech signal, F is the observation transformation matrix, W 
is generated by a hidden Markov model (HMM) with diagonal covariance matrix Gaussian 

IThis describes the static version of the generative model. The more general version is described 
by replacing equation 1 by x( T) = Cx( T - 1) + w. 



mixture model (GMM) to model each state2 and v is usually assumed to be generated by a 
GMM, which is common to all HMMs. This differs from the static linear Gaussian models 
presented in [7] in two important ways. First w is generated by either an HMM or GMM, 
rather than a simple Gaussian distribution. The second difference is that the "noise" is 
now restricted to the null space of the signal x (7). This type of system can be considered 
to have two streams. The first stream, the n1 dimensions associated with X(7), is the set 
of discriminating, useful, dimensions. The second stream, the n2 dimensions associated 
with v, is the set of non-discriminating, nuisance, dimensions. Linear discriminant analy­
sis (LDA) and heteroscedastic LDA (HLDA) [5] are both based on this form of generative 
model. When the dimensionality of the nuisance dimensions is reduced to zero this gener­
ative model becomes equivalent to a semi-tied covariance matrix system [3] with a single, 
global, semi-tied class. 

This generative model has a clear advantage during recognition compared to the standard 
linear Gaussian models [2] in the reduction in the computational cost of the likelihood 
calculation. The likelihood for component m may be computed as3 

( ( ) . (m) ~(m) F) _ l(7) N((F-1) (). (m) ~(m)) 
po 7 ,IL , diag' - Idet(F)I [1]07 , IL , diag (3) 

where lL(m) is the n1 -dimensional mean and ~~~lg the diagonal covariance matrix of Gaus­

sian component m. l (7) is the nuisance dimension likelihood which is independent of the 
component being considered and only needs to be computed once for each time instance. 
The initial normalisation term is only required during recognition when multiple trans­
forms are used. The dominant cost is a diagonal Gaussian computation for each compo­
nent, O(n1) per component. In contrast a scheme such as factor analysis (a covariance 
modelling scheme from the linear Gaussian model in [7]) has a cost of O(ni) per compo­
nent (assuming there are n1 factors). The disadvantage of this form of generative model is 
that there is no simple expectation-maximisation (EM) [1] scheme for estimating the model 
parameters. However, a simple iterative scheme is available [3]. 

For some tasks, such as speech recognition where there are many different "sounds" to be 
recognised, it is unlikely that a single transform is sufficient to well model the data. To 
reflect this there has been some work on using multiple feature-spaces [3, 2]. The stan­
dard approach for using multiple transforms is to assign each component, m, to a particular 
transform, F( Tm). To simplify the description of the new scheme only modifications to the 
semi-tied covariance matrix scheme, where the nuisance dimension is zero, are considered. 
The generative model is modified to be 0(7) = F(Tm )X(7), where Tm is the transform 
class associated with the generating component, m, at time instance 7. The assignment 
variable, Tm , may either be determined by an "expert", for example using phonetic context 
information, or it may be assigned in a maximum likelihood (ML) fashion [3]. Simply 

2 Although it is not strictly necessary to use diagonal covariance matrices, tllese currently dominate 
applications in speech recognition. w could also be generated by a simple GMM. 

3This paper uses the following convention: capital bold letters refer to matrices e.g. A, bold 
letters refer to vectors e.g. b, and scalars are not bold e.g. c. When referring to elements of a matrix 
or vector subscripts are used e.g. ai is tlle ith row of matrix A, aij is tlle element of row i column 
j of matrix A and bi is element i of vector b. Diagonal matrices are indicated by A diag. Where 
multiple streams are used tllis is indicated, for example, by A[s], this is a n. x n matrix (n is tlle 
dimensionality of tlle feature vector and n. is tlle size of stream 8). Where subsets of tlle diagonal 
matrices are specified tlle matrices are square, e.g. Adiag[s] is ns x ns square diagonal matrix. AT 

is tlle transpose of tlle matrix and det( A) is tlle determinant of the matrix. 



increasing the number of transforms increases the number of model parameters to be esti­
mated, hence reducing the robustness of the estimates. There is a corresponding increase in 
the computational cost during recognition. In the limit there is a single transform per com­
ponent, the standard full-covariance matrix case. The approach adopted in this paper is to 
factor the transform into multiple streams. Each component can then use a different trans­
form for each stream. Hence instead of using an assignment variable an assignment vector 
is used. In order to maintain the efficient likelihood computation of equation 3, F(r)-l, 

rather than F(r), must be factored into rows. This is a partitioning of the feature space into 
a set of observation streams. In common with other factoring schemes this dramatically in­
creases the effective number of transforms from which each component may select without 
increasing the number of transform parameters. Though this paper only considers factoring 
semi-tied covariance matrices the extension to the "projection" schemes presented in [2] is 
straightforward. 

This paper describes how to estimate the set of transforms and determine which subspaces 
a particular component should use. The next section describes how to assign components 
to transforms and, given this assignment, how to estimate the appropriate transforms. Some 
initial experiments on a large vocabulary speech recognition task are presented in the fol­
lowing section. 

2 Factored Semi-Tied Covariance Matrices 

In order to factor semi-tied covariance matrices the inverse of the observation transforma­
tion for a component is broken into multiple streams. The feature space of each stream is 
then determined by selecting from an inventory of possible transforms. Consider the case 
where there are S streams. The effective full covariance matrix of component m, ~(m), 
may be written as ~(m) = F(z(~)) ~(':') F(Z(~))T where the form of F(z(~)) is restricted 

dlag , 

so that4 

(4) 

and z(m) is the S-dimensional assignment vector for component m. The complete set of 
model parameters, M, consists of the standard model parameters, the component means, 

variances, weights and, additionally, the set of transforms { Af~l ' ... , Af~')} for each 

stream s (Rs is the number of transforms associated with stream s) and the assignment 
vector z(m) for each component. Note that the semi-tied covariance matrix scheme is the 
case when S = 1. The likelihood is efficiently estimated by storing transformed observa­

tions for each stream transform, i.e. Af;! O(T). 

The model parameters are estimated using ML training on a labelled set of training data 
o = {0(1), . .. , o(T)}. The likelihood of the training data may be written as 

p(OIM) = LIT (P(q(T)lq(T -1)) L w(m)p(O(T);IL(m),~g;lg'A(Z(~)))) (5) 

E> r mE(}(r) 

4A similar factorisation has also been proposed in [4]. 



where e is the set of all valid state sequences according to the transcription for the data, 
q(T) is the state at time T of the current path, O(T) is the set of Gaussian components be­
longing to state q(T), and w(m) is the prior of componentm. Directly optimising equation 5 
is a very large optimisation task, as there are typically millions of model parameters. Alter­
natively, as is common with standard HMM training, an EM-based approach is used. The 
posterior probability of a particular component, m, generating the observation at a given 
time instance is denoted as 'Ym ( T). This may be simply found using the forward backward 
algorithm [6] and the old set of model parameters M. The new set of model parameters 
will be denoted as M. The estimation of the component priors and HMM transition ma­
trices are estimated in the standard fashion [6]. Directly optimising the auxiliary function 
for the model parameters is computationally expensive [3] and does not allow the embed­
ding of the assignment process. Instead a simple iterative optimisation scheme is used as 
follows: 

1. Estimate the within class covariance matrix for each Gaussian component in the 
system, W(m), using the values of 'Ym (T). Initialise the set of assignment vectors, 

{z} = {Z(1), ... , Z(M)} and the set of transforms for each stream {A} = 
{A (1) A(Rt) A(1) A(RS)} 

[1)"'" [1) , ... , [8)"'" [8) . 

2. Using the current estimates of the transforms and assignment vectors obtain the 
ML estimate of the set of component specific diagonal covariance matrices incor­
porating the appropriate parameter tying as required. This set of parameters will 

be denoted as {t} = {~~~g"'" ~~~}. 

3. Estimate the new set of transforms, { A }, using the current set of component co­

variance matrices { t } and assignment vectors { Z }. The new auxiliary function 

at this stage will be written as Q(M, M; { t } , { z} ). 

4. Update the set of assignment variables for each component { Z }, given the current 

set of model transforms, { A } . 

5. Goto (2) until convergence, or an appropriate stopping criterion is satisfied. Oth­

erwise update {t} and the component means using the latest transforms and 

assignment variables. 

There are three distinct optimisation problems within this task. First the ML estimate of 
the set of component specific diagonal covariance matrices is required. Second, the new 
set of transforms must be estimated. Finally the new set of assignment vectors is required. 
The ML estimates of the component specific variances (and means) under a transformation 
is a standard problem, e.g. for the semi-tied case see [3] and is not described further. The 
ML estimation of the transforms and assignment variables are described below. 

The transforms are estimated in an iterative fashion. The proposed scheme is derived by 
modifying the standard semi-tied covariance optimisation equation in [3]. A row by row 



optimisation is used. Consider row i of stream p of transform r, a[;fi' the auxiliary function 

may be written as (ignoring constant scalings and elements independent of a[;fi) 

Q(M M' {t} {z}) = "" (3(m) log ((c(z(m»a(Z~~»T)2) _ "" a(r) .K(srj)a(r)T ", L...J [pj. [pj. L...J [sj} [sj} 
m 8,r,j 

w(m) 

K(srj ) = L (m)2 L 'Ym(r) 

m:{z~m)=r} U diag[sjj T 

(6) 

(z(m» (z(m» (r) 
and c[pji is the cofactor of row i of stream p of transform A . The gradient j [pji' 

differentiating the auxiliary function with respect to a[;fi' is given by5 

{ 
(m)c(z~m»} 

j(r). = "" 2 (3 [pj. _ 2a(r).K(pri) 
[pj. L...J (z(m» (r)T [pj. 

m:{z~m)=r} C[pji a[pji 

(8) 

The main cost for computing the gradient is calculating the cofactors for each component. 
Having computed the gradient the Hessian may also be simply calculated as 

{ 
(m) (z(m»T (z(m»} 

H(r) . = "" _2(3 c [pji c[pji _ 2K(pri) 
[pj. L...J ( (z(m» (r)T)2 

m:{z~m)=r} c[pji a[pji 

(9) 

The Hessian is guaranteed to be negative definite so the Newton direction must head to­
wards a maximum. At the t + 1 th iteration 

(r) ( 1) _ (r) () j(r) H(r)-l 
a[pji t + - a[pji t - [pji [Pji (10) 

where the gradient and Hessian are based on the tth parameter estimates. In practice this 
estimation scheme was highly stable. 

The assignment for stream s of component m is found using a greedy search technique 
based on ML estimation. Stream s of component m is assigned using 

{ ( 
Idet (A (u(,rm») 12 ) } 

z(m) - arg max 
s - rER, Idet ( diag (A[;i W(m) A[;t) ) I (11) 

where the hypothesised assignment of factor stream s, u(srm), is given by 

(srm) _ { r, j = s 
uj - z~m), (otherwise) 

(12) 

-------------------------
5When the standard semi-tied system is used (i.e. S = 1) the estimation of row, i has the closed 

form solution 

(r) _ (r) K(lri)-l (Lm:{zim)=r} f3(m)) 
a[l]i - C[l ]i (r) K(lri)-l (r)T 

C[l]i C[l]i 

(7) 



As the assignment is dependent on the cofactors, which themselves are dependent on the 
other stream assignments for that component, an iterative scheme is required. In practice 
this was found to converge rapidly. 

3 Results and Discussion 

An initial investigation of the use of factored semi-tied covariance matrices was carried 
out on a large-vocabulary speaker-independent continuous-speech recognition task. The 
recognition experiments were performed on the 1994 ARPA Hub 1 data (the HI task), an 
unlimited vocabulary task. The results were averaged over the development and evaluation 
data. Note that no tuning on the "development" data was performed. The baseline sys­
tem used for the recognition task was a gender-independent cross-word-triphone mixture­
Gaussian tied-state HMM system. For details of the system see [8]. The total number of 
phones (counting silence as a separate phone) was 46, from which 6399 distinct context 
states were formed. The speech was parameterised into a 39-dimensional feature vector. 

The set of baseline experiments with semi-tied covariance matrices (8 = 1) used "expert" 
knowledge to determine the transform classes. Two sets were used. The first was based 
on phone level transforms where all components of all states from the same phone shared 
the same class (phone classes). The second used an individual transform per state (state 
classes). In addition a global transform (global class) and a full-covariance matrix system 
(comp class) were tested. Two systems were examined, a four Gaussian components per 
state system and a twelve Gaussian component system. The twelve component system is 
the standard system described in [8]. In both cases a diagonal covariance matrix system (la­
belled none) was generated in the standard HTK fashion [9]. These systems were then used 
to generate the initial alignments to build the semi-tied systems. An additional iteration of 
Baum-We1ch estimation was then performed. 

Three forms of assignment training were compared. The previously described expert sys­
tem and two ML-based schemes, standard andfactored. The standard scheme used a single 
stream (8 = 1) which is similar to the scheme described in [3]. The factored scheme used 
the new approach described in this paper with a separate stream for each of the elements of 
the feature vector (8 = 39). 

Table 1: System performance on the 1994 ARPA HI task 

none 

global 
phone 
state 
comp 

phone 
phone 

Assignment 
Scheme 

-
expert 
expert 

-

standard 
factored 

10.34 8.87 
10.04 8.86 
9.20 8.84 
9.22 9.98 

9.73 8.62 
9.48 8.42 

The results of the baseline semi-tied covariance matrix systems are shown in table 1. For the 
four component system the full covariance matrix system achieved approximately the same 
performance as that of the expert state semi-tied system. Both systems significantly (at the 



95% level) outperformed the standard 12-component system (9.71 %). The expert phone 
system shows around an 9% degradation in performance compared to the state system, 
but used less than a hundredth of the number of transforms (46 versus 6399). Using the 
standard ML assignment scheme with initial phone classes, S = 1, reduced the error rate 
of the phone system by around 3% over the expert system. The factored scheme, S = 39, 
achieved further reductions in error rate. A 5% reduction in word error rate was achieved 
over the expert system, which is significant at the 95% level. 

Table 1 also shows the performance of the twelve component system. The use of a global 
semi-tied transform significantly reduced the error rate by around 9% relative. Increasing 
the number of transforms using the expert assignment showed no reduction in error rate. 
Again using the phone level system and training the component transform assignments, 
either the standard or the factored schemes, reduced the word error rate. Using the factored 
semi-tied transforms (S = 39) significantly reduced the error rate, by around 5%, compared 
to the expert systems. 

4 Conclusions 

This paper has presented a new form of semi-tied covariance, the factored semi-tied co­
variance matrix. The theory for estimating these transforms has been developed and im­
plemented on a large vocabulary speech recognition task. On this task the use of these 
factored transforms was found to decrease the word error rate by around 5% over using a 
single transform, or multiple transforms, where the assignments are expertly determined. 
The improvement was significant at the 95% level. In future work the problems of deter­
mining the required number of transforms for each of the streams and how to determine the 
appropriate dimensions will be investigated. 
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