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Abstract 

We examine eight different techniques for developing visual rep­
resentations in machine vision tasks. In particular we compare 
different versions of principal component and independent com­
ponent analysis in combination with stepwise regression methods 
for variable selection. We found that local methods, based on the 
statistics of image patches, consistently outperformed global meth­
ods based on the statistics of entire images. This result is consistent 
with previous work on emotion and facial expression recognition. 
In addition, the use of a stepwise regression technique for selecting 
variables and regions of interest substantially boosted performance. 

1 Introduction 

We study the performance of eight different methods for developing image repre­
sentations based on the statistical properties of the images at hand. These methods 
are compared on their performance on a visual speech recognition task. While 
the representations developed are specific to visual speech recognition, the meth­
ods themselves are general purpose and applicable to other tasks. Our focus is 
on low-level data-driven methods based on the statistical properties of relatively 
untouched images, as opposed to approaches that work with contours or highly 
processed versions of the image. Padgett [8] and Bartlett [1] systematically studied 
statistical methods for developing representations on expression recognition tasks. 
They found that local wavelet-like representations consistently outperformed global 
representations, like eigenfaces. In this paper we also compare local versus global 
representations. The main differences between our work and that in [8] and [1] 
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Figure 1: The normalization procedure. In each panel, the "+" indicates the center 
of the lips, and the "0" indicates the center of the image. The location of the 
lips was automatically determined using Luettin et al. point density model for lip 
tracking: (1) Original image; (2) The center of the lips was translated to the center 
ofthe image; (3) The image was rotated in the plane to horizontal; (4) The lips were 
scaled to a constant reference width; (5) The image was symmetrized relative to 
the vertical midline; (6) The intensity was normalized using a logistic gain control 
procedure. 

are: (1) We use image sequences while they used static images; (2) Our work in­
volves images of the mouth region while their work involves images of the entire 
face; (3) Our recognition engine is a bank of hidden Markov model while theirs is a 
backpropagation network [8] and a nearest neighbor classifier [1]. In addition to the 
comparison of local and global representations, we propose an unsupervised method 
for automatically selecting regions and variables of interest. 

2 Preprocessing and Recognition Engine 

The task was recognition of the words "one", "two", "three" and "four" from the 
Tulips1 [7] database. The database consists on movies of 12 subjects each uttering 
the digits in English twice. While the number of words is limited, the database is 
challenging due to differences in illumination conditions, ethnicity and gender of the 
subjects. Image preprocessing consisted of the following steps: First the contour of 
the outer lips were tracked using point distribution models, a data-driven technique 
based on analysis ofthe gray-level statistics around lip contours [5]. The lip images 
were then normalized for translation and rotation. This was accomplished by first 
padding the image on all sides with 25 rows or columns of zeros, and modulating 
the images in the spatial frequency domain. The images were symmetrized with 
respect to the vertical axis going through the center of the lips. This makes the 
final representation more robust to horizontal changes in illumination. The images 
were cropped to 65 pixels vertically x 87 pixels horizontally (see Figure 1) and their 
intensity was normalized using logistic gain control [7]. Eight different techniques 
were used on the normalized database each of which developed a different image 
basis. For each of these techniques the following steps were followed: (1) Projection: 
For each image in the database we compute the coordinates x(t) of the image with 
respect to the image bases developed using each of the eight techniques; (2) Tempoml 
differentiation: For each time step we compute the vectors 8(t) = x(t) - x(t - 1), 
where x(t) represents the coordinate vector of image presented at time t; (3) Gain 
control: Each component of x(t) and 8(t) is independently scaled using a logistic 
gain control function matched to the mean and variance of each component across 
an entire movie [7] . This results in a form of soft histogram equalization; (4) 
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Figure 2: Global decompositions for the normalized image dataset. Row 1: Global 
kernels of principal component analysis ordered with first eigenimage on left. Row 
2: Log magnitude spectrum of eigenimages. Row 3: Global pixel space independent 
component kernels ordered according to projected variance. Row 4: Log magnitude 
spectrum of global independent components. 

Recognition: The scaled x(t) and 8(t) coefficients are fed to the HMM recognition 
engine. 

3 Global Methods 

We first evaluated the performance of techniques based on the statistics of the 
entire lip images as opposed to portions of it. This global approach has been 
shown to provide good performance on face recognition [9], expression recognition 
[2], and gender recognition tasks [4]. In particular we compared the performance 
of principal component analysis (PCA) and two different versions of independent 
component analysis (ICA). 

3.1 Global PC A: 

We tried image bases that consisted of the first 50, 100 and 150 eigenvectors of the 
pixelwise covariance matrix. Best results were obtained with the first 50 principal 
components (which accounted for 94.6% of the variance) and are the only ones 
reported here. The top row of Figure 2 shows the first 5 eigenvectors displayed as 
images, their magnitude spectrum is shown in the second row. These eigenimages 
have most of their energy localized in low and horizontal spatial frequencies and 
are typically non-local in the spatial domain (i.e., have non-zero energy distributed 
over the whole image). 

3.2 Global ICA: 

The goal of lnfomax ICA is to transform an input random vector such that the en­
tropy of the output vector is maximized [3]. The main differences between ICA and 
PCA are: (1) ICA maximizes the joint entropy of the outputs, while PCA maximizes 
the sum of their variance; (2) PCA provides orthogonal basis vectors, while rcA 
basis vectors need not be orthogonal; (3) PCA outputs are always uncorrelated, 
but may not be statistically independent. ICA attempts to extract independent 
outputs, not just uncorrelated. We tried two different ICA approaches: 

ICA I: This method results in a non-orthogonal transformation of the bases de­
veloped via PCA. While such transformations do not change the underlying space of 



Figure 3: Upper left: Lip patches (12 pixels x 12 pixels) from randomly chosen 
locations used to develop local PCA and local lCA kernels. Lower left: Four or­
thogonal images generated from a single local PCA kernel. Right: Top 10 Local 
PCA and lCA kernels ordered according to projected variance (highest at top left). 
Note how the lCA vectors tend to be more local and consistent with the receptive 
fields found in VI. 

the representation they may facilitate the job of the recognition engine by decreas­
ing the statistical dependency amongst the coordinates. First each image in the 
database was projected onto the space spanned by the first 50 eigenvectors of the 
pixelwise covariance matrix. Then lCA was performed on the 50 PCA coordinate 
variables to obtain a new 50-dimensional non-orthogonal basis. 

lCA II: A different approach to lCA was explored in [1] for face recognition tasks 
and by [6] for fMRI images. While in lCA-l the goal is to develop independent image 
coordinates, in rcA-II the goal is for the image bases themselves to be independent. 
Here independence of images is defined with respect to a probability space in which 
pixels are seen as outcomes and images as random vectors of such outcomes. The 
approach, which is described in detail in [6], resulted in a set of 50 images which 
were a non-orthogonal linear transformation of the first 50 eigenvectors of the pix­
elwise covariance matrix. The first 5 images (accounting for the largest amounts of 
projected variance) obtained via this approach to lCA are shown in the third row of 
Figure 2. The fourth row shows their magnitude spectrum. As reported in [1] the 
images obtained using this method are more local than those obtained via PCA. 

4 Local Methods 

Padgett et al. [8] reported surprisingly good results on an emotion recognition tasks 
using PCA on random patches of the face instead of the entire face. Recent theoret­
ical work also places emphasis on spatially localized, wavelet-like image bases. One 
potential advantage of spatially localized image bases is that they provide explicit 
information about where things are happening, not just about what is happening. 
This facilitates the work of recognition engines on some tasks but the theoretical 
reasons for this are unclear at this point. 

Local PCA and lCA kernels were developed based on a database of 18680 small 
patches (12 pixel x 12 pixel) chosen from random locations in the Tulip1s database. 
A sample of these random patches (superimposed on a lip image) is shown in the 
top panel of Figure 3. Hereafter we refer to the 12 pixel x 12 pixel images obtained 
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Figure 4: Kernel-location combinations chosen using unblocked variable selection. 
Top of each quadrant: Local rcA or peA kernel. Bottom of each quadrant: Lip 
image convolved with corresponding local kernel, then downsampled. The numbers 
on the lip image indicate the order in which variables were chosen for the multiple 
regression procedure. There are no numbers on the right side of the lip images 
because only half of each lip image was used for the representation (since the images 
are symmetrized). 

via peA or leA as "kernels". Image bases were generated by centering a local 
peA or leA kernel onto different locations and padding the rest of the matrix 
with zeros, as displayed in Figure 3 (lower left panel). This results on bases images 
which are local in space (the energy is localized about a single patch) and shifted 
versions of each other. The process of obtaining image coordinates can be seen as 
a filtering operation followed by subsampling: First the images are filtered using a 
bank of filters whose impulse response are the kernels obtained via peA (or leA). 
The relevant coordinates are obtained by subsampling at 300 uniformly distributed 
locations (15 locations vertically by 20 locations horizontally). We explored four 
different filtering approaches: (1) Single linear shift invariant filter (LSI); (2) Single 
linear shift variant filter (LSV); (3) Bank of LSI filters with blocked selection; (4) 
Bank of LSI filters combined with unblocked selection. 

For the single-filter LSI approach, the images were convolved with a single local leA 
kernel or a local peA kernel. The top 5 local peA and leA kernels were each tested 
separately and the results obtained with the best of the 5 kernels were reported. For 
the single LSV-filtering approach different local peA kernels were derived for a total 
of 117 non-overlapping regions each of which occupied 5 x 5 pixels. Each region of 
the 934 images was projected onto the first principal component corresponding to 
that location. This effectively resulted in an LSV filtering operation. 

4.1 Automatic Selection of Focal Points 

Padgett's [8] most successful method was based on outputs of local filters at manu­
ally selected focal regions. Their task was emotion recognition and the focal regions 
were the eyes and mouth. In visual speech recognition once the lips are chosen it 



Image Processing Performance ± s.e.m. 
Global peA 79.2 ± 4.7 

Global Methods Global Il;A I 61.5 ± 4.5 
Ulobal ICA II 74.0 ± 5.4 

Single-Filter LSI peA 90.6 ± 3.1 
Single-Filter LSI ICA 89.6 ± 3.0 

Local Methods Blocked Filter Bank PeA 85.4 ± 3.7 
Blocked Filter Bank leA 85.4 ± 3.0 

Unblocked Filter Bank peA 91.7 ± 2.8 
Unblocked Filter Bank Il;A 91.7 ± 3.2 

Table 1: Best generalization performance (% correct) ± standard error of the mean 
for all image representations. 

is unclear which regions would be most informative. Thus we developed a method 
for automatic selection of focal regions. 

First 10 filters were developed via local leA (or peA). Each image was filtered 
using the 10-filter bank and the outputs were subsampled at 150 locations for a 
1500 dimensional representation (10 filters x 150 locations) of each of the images 
in the dataset. Regions and variables of interest were then selected using a stepwise 
forward multiple regression procedure. First we choose the variable that, when 
averaging across the entire database, best reconstructed the original images. Here 
best reconstruction is defined in terms of least squares using a multiple regression 
model. Once a variable is selected, it is "tenured" and we search for the variable 
which in combination with the tenured ones best reconstructs the image database. 
The procedure is stopped when the number of tenured variables reaches a criterion 
point. We compared performance using 50, 100, and 150 tenured variables and 
report results with the best of those three numbers. We tested two different selection 
procedures, one blocked by location and one in which location was not blocked. In 
the first method the selection was done in blocks of 10 variables where each block 
contained the outputs of all the filters at a specific location. If a location was chosen, 
the outputs of the 10 filters in that location were automatically included in the final 
image representation. In the second method selection of variables was not blocked 
by location. 

Figure 4 shows, for 2 local peA and 2 local leA kernels, the first 10 variables chosen 
for each particular kernel using the forward selection multiple regression procedure. 
The numbers on the lip images in this figure indicate the order in which particular 
kernel/location variables were chosen using the sequential regression procedure: "I" 
indicates the first variable chosen, "2" the second, etc. 

5 Results and Conclusions 

Table 1 shows the best generalization performance (out of the 9 HMM architectures 
tested) for each of the eight image representation methods. The local decomposi­
tions significantly outperformed the global ones (t(106) = 4.10, p < 0.001). The 
improved performance of local representations is consistent with current ideas on 
the importance of localized wavelet-like representations. However, it is unclear 
why local decompositions work better. One possibility is that these results apply 
only to this particular recognition engine and the problem at hand (i.e., hidden 
Markov models for speechreading). Yet similar results with local representations 
were reported in [8] on an emotion classification task with a 3 layer backpropaga-



tion network and in [1] on an expression classification tasks with a nearest neighbor 
classifier. Another possible explanation for the advantage of local representations 
is that global unsupervised decompositions emphasize subject identity while local 
decompositions tend to hide it. We found some evidence consistent with this idea 
by testing global and local representations on a subject identification task (i.e., 
recognizing which person the lip images belong to). For this task the global repre­
sentations outperformed the local ones. However this result is inconsistent with [8] 
which found local representations were better on emotion classification and on sub­
ject identification tasks. Another possibility is that local representations make more 
explicit information about where things are happening, not just what is happening, 
and such information turns out to be important for the task at hand. 

The image representations obtained using the bank of filter methods with unblocked 
selection yielded the best results. The stepwise regression technique used to select 
kernels and regions of interest led to substantial gains in recognition performance. 
In fact the highest generalization performance reported here (91. 7% with the bank of 
filters using unblocked variable selection) surpassed the best published performance 
on this dataset [5]. 
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