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Abstract 

This paper explores a framework for recognition of image sequences 
using partially observable stochastic differential equation (SDE) 
models. Monte-Carlo importance sampling techniques are used for 
efficient estimation of sequence likelihoods and sequence likelihood 
gradients. Once the network dynamics are learned, we apply the 
SDE models to sequence recognition tasks in a manner similar to 
the way Hidden Markov models (HMMs) are commonly applied. 
The potential advantage of SDEs over HMMS is the use of contin­
uous state dynamics. We present encouraging results for a video 
sequence recognition task in which SDE models provided excellent 
performance when compared to hidden Markov models. 

1 Introduction 

This paper explores a framework for recognition of image sequences using partially 
observable stochastic differential equations (SDEs). In particular we use SDE mod­
els of low-power non-linear RC circuits with a significant thermal noise component. 
We call them diffusion networks. A diffusion network consists of a set of n nodes 
coupled via a vector of adaptive impedance parameters>' which are tuned to op­
timize the network's behavior. The temporal evolution of the n nodes defines a 
continuous stochastic process X that satisfies the following Ito SDE: 

dX(t) = Ji-(X(t), >')dt + a dB(t), 

X(O) '" v, 

(1) 

(2) 

where v represents the (stochastic) initial conditions and B is standard Brownian 
motion. The drift is defined by a non-linear RC charging equation 

1 ( - 1 ) Ji-j(X(t),>') = - ~j +Xj(t) - -Xj(t) , for j = 1,··· ,n, 
Kj Pj 

(3) 

where Ji-j is the drift of unit j, i.e., the ]fh component of Ji-. Here Xj is the internal 
potential at node j, Kj > 0 is the input capacitance, Pj the node resistance, ~j a 
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Figure 1: An illustration of the differences between stochastic differential equation 
models (SDE), ordinary differential equation models (ODE) and Hidden Markov 
Models (HMM). In ODEs the the state dynamics are continuous and deterministic. 
In SDEs the state dynamics are continuous and stochastic. In HMMs the state 
dynamics are discrete and probabilistic. 

constant input current to the unit, Xj the net electrical current input to the node, 

n 

Xj(t) = L Wj ,m rp(Xm(t)), for j = 1,··· ,n, (4) 
m=l 

1 
rp(x) = 1 ' for all x E JR, + e- X 

(5) 

where rp the input-output characteristic amplification, and l/wj,m is the impedance 
between the output Xm and the node j. Intuition for equation (3) can be achieved 
by thinking of it as the limit of a discrete time stochastic difference equation, 

X(t + ~t) = X(t) + /-£(X(t), A)~t + u-/MZ(t) , (6) 

where the Z(t) is an n-dimensional vector ofindependent standard Gaussian random 
variables. For a fixed state at time t there are two forces controlling the change in 
activation: the drift, which is deterministic, and the dispersion which is stochastic 
(see Figure 1). This results in a distribution of states at time t + ~t. As ~t goes to 
zero, the solution to the difference equation (6) converges to the diffusion process 
defined in (3). 

Figures 1 and 2 shows the relationship between SDE models and other approaches 
in the neural network and the stochastic filtering literature. The main difference 
between ODE models, like standard recurrent neural networks, and SDE models is 
that the first has deterministic dynamics while the second has probabilistic dynam­
ics. The two approaches are similar in that the states are continuous. The main 
difference between HMMs and SDEs is that the first have discrete state dynamics 
while the second have continuous state dynamics. The main similarity is that both 
are probabilistic. Kalman filters are linear SDE models. If the impedance ma­
trix is symmetric and the network is given enough time to approximate stochastic 
equilibrium, diffusion network behave like continuous Boltzmann machines (Ackley, 
Hinton & Sejnowski, 1985). If the network is discretized in state and time it be­
comes a standard HMM. Finally, if the dispersion constant is set to zero the network 
behaves like a deterministic recurrent neural network. 

In order to use of SDE models we need a method for finding the likelihood and the 
likelihood gradient of observed sequences. 
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Figure 2: Relationship between diffusion filters and other approaches in the neural 
network and stochastic filtering literature. 

2 Observed sequence likelihoods 

We regard the first d components of an SDE model as observable and denote them by 
O. The last n - d components are denoted by H and named unobservable or hidden. 
Hidden components are included for modeling non-Markovian dependencies in the 
observable components. Let no, nh be the outcome spaces for the observable and 
hidden processes. Let n = no x nh the joint outcome space. Here each outcome W is 
a continuous path w : [0, T] --t IRn. For each wEn, we write w = (wo, Wh), where Wo 
represents the observable dimensions of the path and Wh the hidden dimensions. Let 
Q>'(A) represent the probability that a network with parameter A generates paths in 
the set A, Q~(Ao) the probability that the observable components generate paths in 
Ao and Q~(Ah) the probability that the hidden components generate paths in Ah. 
To apply the familiar techniques of maximum likelihood and Bayesian estimation 
we use as reference the probability distribution of a diffusion network with zero 
drift, Le., the paths generated by this network are Brownian motion scaled by u. 
We denote such reference distribution as R, its observable and hidden components 
as Ro, Rh. Using Girsanov's theorem (Karatzas & Shreve, 1991, p. 303) we have 
that 

L~(wo) = ~~: (wo) = f L~,h(wo,Wh) dRh(wh), Wo E no, (7) 

Oh 

where 

dQ>' {1 rT 1 rT } L~,h(W) = dR (w) = exp u 2 io f..L(w(t), A) . dw(t) - 2u2 io 1f..L(w(t) , A)1 2 dt . 

(8) 

The first integral in (8) is an Ito stochastic integral, the second is a standard 
Lebesgue integral. The term L~ is a Radon-Nikodym derivative that represents 
the probability density of Q~ with respect to Ro. For a fixed path Wo the term 
L~(wo) is a likelihood function of A that can be used for Maximum likelihood esti­
mation. To obtain the likelihood gradient, we differentiate (7) which yields 

\7>.logL~(wo) = f L~lo(Wh Iwo)\7>.logL~,h(wo,wh) dRh(wh), (9) 

Oh 



where 

and [A is the joint innovation process 

[A(t,w) = W(t) - W(O) -lot p,(w(u), A) duo 

2.1 Importance sampling 

(10) 

(11) 

(12) 

(13) 

(14) 

The likelihood of observed paths (7), and the gradient of the likelihood (9) require 
averaging with respect to the distribution of hidden paths Rh. We estimate these 
averages using an importance sampling in the space of sample paths. Instead of 
sampling from Rh we sample from a distribution that weights more heavily regions 
where L~ h is large. Each sample is then weighted by the density of the sampling 
distributi~n with respect to Rh. This weighting function is commonly known as 
the importance function in the Monte-Carlo literature (Fishman, 1996, p. 257). 
In particular for each observable path Wo we let the sampling distribution S~,wo 
be the probability distribution generated by a diffusion network with parameter 
A which has been forced to exhibit the path Wo over the observable units. The 
approach reminiscent of the technique of teacher forcing from deterministic neural 
networks. In practice, we generate Li.d. sampled hidden paths {h(i)}~l from S~,wo 
by numerically simulating a diffusion network with the observable units forced to 
exhibit the path Wo these hidden paths are then weighted by the density of S~,wo 
with respect to Rh, which acts as a Monte-Carlo importance function 

In practice we have obtained good results with m in the order of 20, i.e., we sample 
20 hidden sequences per observed sequence. One interesting property of this ap­
proach is that the sampling distributions S~,wo change as learning progresses, since 
they depend on A. 

Figure 3 shows results of a computer simulation in which a 2 unit network was 
trained to oscillate. We tried an oscillation pattern because of its relevance for the 
application we explore in a later section, which involves recognizing sequences of 
lip movements. The figure shows the "training" path and a couple of sample paths, 
one obtained with the u parameter set to 0, and one with the parameter set to 0.5. 
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Figure 3: Training a 2 unit network to maximize the likelihood of a sinusoidal path. 
The top graph shows the training path. It consists of two sinusoids out of phase 
each representing the activation of the two units in the network. The center graph 
shows a sample path obtained after training the network and setting a = 0, i.e., no 
noise. The bottom graph shows a sample path obtained with a = 0.5. 

3 Recognizing video sequences 

In this section we illustrate the use of SDE models on a sequence classification 
task of reasonable difficulty with a body of realistic data. We chose this task since 
we know of SDE models used for tracking problems but know of no SDE models 
used for sequence recognition tasks. The potential advantage of SDEs over more 
established approaches such as HMMs is that they enforce continuity constraints, 
an aspect that may be beneficial when the actual signals are better described using 
continuous state dynamics. We compared a diffusion network approach with classic 
hidden Markov model approaches. 

We used Tulipsl (Movellan, 1995), a database consisting of 96 movies of 9 male 
and 3 female undergraduate students from the Cognitive Science Department at 
the University of California, San Diego. For each student two sample utterances 
were taken for each of the digits "one" through "four". The database is available 
at http://cogsci.ucsd.edu. We compared the performance of diffusion networks and 
HMMs using two different image processing techniques (contours and contours plus 
intensity) in combination with 2 different recognition engines (HMMs and diffusion 
networks). The image processing was performed by Luettin and colleagues (Luettin, 
1997). They employ point density models, where each lip contour is represented by 
a set of points; in this case both the inner and outer lip contour are represented, 
corresponding to Luettin's double contour model. The dimensionality of the rep­
resentation of the contours is reduced using principal component analysis. For the 
work presented here 10 principal components were used to approximate the contour, 
along with a scale parameter which measured the pixel distance between the mouth 
corners; associated with each of these 11 parameters was a corresponding "delta 
component", the left-hand temporal difference of the component (defined to be zero 
for the first frame). In this manner a total of 22 parameters were used to represent 
lip contour information for each still frame. These 22 parameters were represented 
using diffusion networks with 22 observation units, one per parameter value. We 
also tested the performance of a representation that used intensity information in 
addition to contour shape information. This approach used 62 parameters, which 
were represented using diffusion networks with 62 observation units. 



Approach 
Best HMM, shape information only 
Best diffusion network, shape information only 
Untrained human subjects 
Best HMM, shape and intensity information 
Best diffusion network, shape and intensity information 
Trained human subjects 

Correct Generalization 
82.3% 
85.4% 
89.9% 
90.6% 
91.7% 
95.5% 

Table 1: Average generalization performance on the Tulips1 database. Shown in 
order are the performance of the best performing HMM from (Luettin et al., 1996), 
which uses only shape information, the best diffusion network obtained using only 
shape information, the performance of untrained human subjects (Movellan, 1995), 
the HMM from Luettin's thesis (Luettin 1997) which uses both shape and intensity 
information, the best diffusion network obtained using both shape and intensity 
information, and the performance of trained human lipreaders (Movellan, 1995). 

We independently trained 4 diffusion networks, to approximate the distributions 
of lip-contour trajectories of each of the four words to be recognized, i.e., the first 
network was trained with examples of the word "one", and the last network with 
examples of the word "four". Each network had the same number of nodes, and 
the drift of each network was given by (3) with K.i = 1, ~ = 0 for all units, and 
~ being part of the adaptive vector A. Thus, A = (~1'··· ,~n,Wl ,1,Wl,2,···Wn , n)/. 
The number of hidden units was varied from one to 5. We obtained optimal results 
with 4 hidden units. The initial state of the hidden units was set to (1, ... ,1) with 
probability 1, and u was set to 1 for all networks. The diffusion network dynamics 
were simulated using a forward-Euler technique, i.e., equation (1) is approximated 
in discrete time using (6). In our simulations we set tl.t = 1/30 seconds, the time 
between video frame samples. Each diffusion network was trained with examples of 
one of the 4 digits using the cost function 

~(A) = L log i~(y(i)) - ~aIAI2, 
i 

(16) 

where {y(i)} are samples from the desired empirical distribution Po and a is the 
strength of a Gaussian prior on the network parameters. Best results were obtained 
with diffusion networks with 4 hidden units. The log-likelihood gradients were 
estimated using the importance sampling approach with m = 20, i.e., we generated 
20 hidden sample paths per observed path. With this number of samples training 
took about 10 times longer with diffusion networks than with HMMs. At test time, 
computation of the likelihood estimates was very fast and could have been done in 
real time using a fast Pentium II. 

The generalization performance was estimated using a jacknife (one-out) technique: 
we trained on all subjects but one, which is used for testing. The process is repeated 
leaving a different subject out every time. Results are shown in Table 1. The table 
includes HMM results reported by Luettin (1997), who tried a variety of HMM 
architectures and reported the best results obtained with them. The only difference 
between Luettin's approach and our approach is the recognition engine, which was a 
bank of HMMs in his case and a bank of diffusion networks in our case. If anything 
we were at a disadvantage since the image representations mentioned above were 
optimized by Luettin to work best with HMMs. 

In all cases the best diffusion networks outperformed the best HMMs reported in 
the literature using exactly the same visual preprocessing. In all cases diffusion net-



works outperformed HMMs. The difference in performance was not large. However 
obtaining even a 1 % increment in performance on this database is very difficult. 

4 Discussion 

While we presented results for a video sequence recognition task, the same frame­
work can be used for tasks such as sequence recognition, object tracking and se­
quence generation. Our work was inspired by the rich literature on continuous 
stochastic filtering and stochastic neural networks. The idea was to combine the 
versatility of recurrent neural networks and the well known advantages of stochas­
tic modeling approaches. The continuous-time nature of the networks is convenient 
for data with dropouts or variable sample rates, since the models we use define 
all the finite dimensional distributions. The continuous-state representation is well 
suited to problems involving inference about continuous unobservable quantities, as 
in visual tracking tasks. Since these networks enforce continuity constraints in the 
observable paths they may not have the well known problems encountered when 
HMMs are used as generative models of continuous sequences. 

We have presented encouraging results on a realistic sequence recognition task. 
However more work needs to be done, since the database we used is relatively small. 
At this point the main disadvantage of diffusion networks relative to conventional 
hidden Markov models is training speed. The diffusion networks used here were 
approximately 10 times slower to train than HMMs. Fortunately the Monte Carlo 
approximations employed herein, which represent the bulk of the computational 
burden, lend themselves to parallel and hardware implementations. Moreover, once 
a network is trained, the computation of the density functions needed in recognition 
tasks can be done in real time. 

We are exploring applications of diffusion networks to stochastic filtering prob­
lems (e.g., contour tracking) and sequence generation problems, not just sequence 
recognition problems. Our work shows that diffusion networks may be a feasible 
alternative to HMMs for problems in which state continuity is advantageous. The 
results obtained for the visual speech recognition task are encouraging, and rein­
force the possibility that diffusion networks may become a versatile tool for a very 
wide variety of continuous signal processing tasks. 
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