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Abstract 
Explaining away has mostly been considered in terms of inference of 
states in belief networks. We show how it can also arise in a Bayesian 
context in inference about the weights governing relationships such as 
those between stimuli and reinforcers in conditioning experiments such 
as bacA,'Ward blocking. We show how explaining away in weight space 
can be accounted for using an extension of a Kalman filter model; pro­
vide a new approximate way of looking at the Kalman gain matrix as a 
whitener for the correlation matrix of the observation process; suggest 
a network implementation of this whitener using an architecture due to 
Goodall; and show that the resulting model exhibits backward blocking. 

1 Introduction 

The phenomenon of explaining away is commonplace in inference in belief networks. In 
this, an explanation (a setting of activities of unobserved units) that is consistent with cer­
tain observations is accorded a low posterior probability if another explanation for the same 
observations is favoured either by the prior or by other observations. Explaining away is 
typically realized by recurrent inference procedures, such as mean field inference (see Jor­
dan, 1998). 

However, explaining away is not only important in the space of on-line explanations for 
data; it is also important in the space of weights. This is a very general problem that we 
illustrate using a phenomenon from animal conditioning called bad 'Ward blocking (Shanks, 
1985; Miller & Matute, 1996). Conditioning paradigms are important because they provide 
a window onto processes of successful natural inference, which are frequently statistically 
normative. Backwards blocking poses a very different problem from standard explaining 
away, and rather complex theories have been advanced to account for it (eg Wagner & 
Brandon, 1989). We treat it as a case for Kalman jiltering, and suggest a novel network 
model for Kalman filtering to solve it. Consider three different conditioning paradigms 
associated with backwards blocking: 

name set 1 set 2 test 
forward L~R L,S~R S~ • 
backward L,S~R L~R S~ • 
sharing L,S~R --- S~Rl2 

These paradigms involve one or two sets of multiple learning trials (set 1 and set 2), in 
which stimuli (a light, L, and/or a sound, S) are conditioned to a reward (R), followed by a 



test phase, in which the strength of association between the sound S and reward is assessed. 
This is found to be weak (.) in forward and backward blocking, but stronger (Rf2) in the 
sharing paradigm. The effect that concerns this paper is occurring during the second set of 
trials during backward blocking in which the association between the sound and the reward 
is weakened (compared with sharing), even though the sound is not presented during these 
trials. The apparent association between the sound and the reward established in the first 
set of trials is explained away in the second set of trials. 

The standard explanation for this (Wagner's SOP model, see Wagner & Brandon, 1989) 
suggests that during the first set of trials, the light comes to predict the presence of the 
sound; and that during the second set of trials, the fact that the sound is expected (on the 
basis of the light, represented by the activation of 'opponent' sound units) but not presented, 
weakens the association between the sound and the reward. Not only does this suggestion 
lack a statistical basis, but also its network implementation requires that the activation of the 
opponent sound units makes weaker the weights from the standard sound units to reward. 
It is unclear how this could work. 

In this paper, we first extend the Kalman filter based conditioning theory of Sutton (1992) 
to the case of backward blocking. Next, we show the close relationship between the key 
quantity for a Kalman filter - namely the covariance matrix of uncertainty about the re­
lationship between the stimuli and the reward - and the symmetric whitening matrix for 
the stimuli. Then we show how the Goodall algorithm for whitening (Goodall 1960; Atick 
& Redlich, 1993) makes for an appropriate network implementation for weight updates 
based on the Kalman filter. The final algorithm is a motivated mixture of unsupervised and 
reinforcement (or, equivalently in this case, supervised) learning. Last, we demonstrate 
backward blocking in the full model. 

2 The Kalman filter and classical conditioning 

Sutton (1992) suggested that one can understand classical conditioning in terms of nor­
mative statistical inference. The idea is that on trial n there is a set of true weights Wn 

mediating the relationship between the presentation of stimuli Xn and the amount of re­
ward Tn that is delivered, where 

(1) 

and En '" N[O, T2] is zero-mean Gaussian noise, independent from one trial to the next. l 

For the cases above, Xn = (x~,x~) might have two dimensions, one each for light and 
sound, taking on values that are binary, representing the presence and absence of the stim­
uli. Similarly, W n = (w~, w~) also has two dimensions. Crucially, to allow for the possi­
bility (realized in most conditioning experiments) that the true weights might change, the 
model includes a diffusion term 

W n+1 = Wn + 11n (2) 

where 11n '" N[O, (72][] is also Gaussian. The task for the animal is to take obser­
vations of the stimuli {xn} and rewards {Tn} and infer a distribution over W n . Pro­
vided that the initial uncertainty can be captured as Wo '" N[O, ~o] for some covari­
ance matrix ~o, inference takes the form of a standard recursive Kalman filter, for which 
P(WnITl ... Tn-d '" N[wn, ~n] and 

, , ~n . Xn ( , ) 
Wn+l =wn + ~ 2 Tn-Wn'Xn 

Xn • LIn . Xn + T 
(3) 

~ _ ~ 2][ _ ~n' XnXn . ~n 
Lln+l - LIn + (7 ~ 2 

Xn . LIn . Xn + T 
(4) 

iPor vectors a, b, matrix C, a· b = I:i aibi, a· C· b = I:ij aiCijbj, matrix [ab]ij = aibj. 



If 1;n ex n, then the update for the mean can be seen as a standard delta rule (Widrow & 
Stearns, 1985; Rescorla & Wagner, 1972), involving the prediction error (or innovation) 
On = rn - wn . x n . Note the familiar, but at first sight counterintuitive, result that the 
update for the covariance matrix does not depend on the innovation or the observed rn .2 

In backward blocking, in the first set of trials, the off-diagonal terms of the covariance 
matrix 1;n become negative. This can either be seen from the form of the update equation 
for the covariance matrix (since Xn '" (1,1)), or, more intuitivep', from the fact that these 
trials imply a constraint only on w* + w~, therefore forcing wn and w* to be negatively 
correlated. The consequence of this negative correlation in the second set of trials is that 
the S component of 1;n . Xn = 1;n . (1,0) is less than 0, and so, via equation 3, w~ reduces. 
This is exactly the result in backward blocking. Another way of looking at this is in terms 
of explaining away in weight space. From the first set of trials, the animal infers that 
w* + w~ = R > 0; from the second, that the prediction owes to w* rather than w~, and 
so the old value w~ = R/2 is explained away by w*. Sutton (1992) actually suggested the 
approximation of forcing the off-diagonal components of the covariance matrix 1;n to be 
0, which, of course, prevents the system from accounting for backward blocking. 

We seek a network account of explaining away in the space of weights by implementing an 
approximate form of Kalman filtering. 

3 Whitening and the Kalman filter 

In conventional applications of the Kalman filter, Xn would typically be constant. That 
is, the hidden state (wn ) would be observed through a fixed observation process. In cases 
such as classical conditioning, though, this is not true - we are interested in the case that Xn 

changes over time, possibly even in a random (though fully observable) way. The plan for 
this section is to derive an approximate relationship between the average covariance matrix 
over the weights f; and a whitening matrix for the stimulus inputs. In the next section, we 
consider an implementation of a particular whitening algorithm as an unsupervised way of 
estimating the covariance matrix for the Kalman filter and show how to use it to learn the 
weights W n appropriately. 

Consider the case that Xn are random, with correlation matrix (xx) = Q, and consider the 
mean covariance matrix f; for the Kalman filter, averaging across the variation in x. Make 
the approximation that 

/ f;. xx . f;) (f; . xx . f;) 
\X.1; ' X+T2 - (X·1;·X+T2) 

which is less drastic than it might first appear since the denominator is just a scalar. Then, 
we can solve for the average of the asymptotic value of f; in the equation for the update of 
the Kalman filter as 

f;Qf; ex n (5) 

Thus f; is a whitening filter for the correlation matrix Q of the inputs {x}. Symmetric 
whitening filters (f; must be symmetric) are generally unique (Atick & Redlich, 1993). 
This result is very different from the standard relationship between Kalman filtering and 
whitening. The standard Kalman filter is a whitening filter for the innovations process 
on = rn - wn . X n , ie as extracting all the systematic variation into W n, leaving only 
random variation due to the observation noise and the diffusion process. Equation 5 is an 
additional level of whitening, saying that one can look at the long-run average covariance 

2Note also the use of the alternative form of the Kalman filter, in which we perform observa­
tion/conditioning followed by drift, rather than drift followed by observation/conditioning. 
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Figure 1: Whitening. A) The lower curve shows the average maximum off-diagonal element of 
IfjQfjl as a function of v . The upper curve shows the average maximum diagonal element of the 
same matrix. The off-diagonal components are around an order of magnitude smaller than the on­
diagonal components, even in the difficult regime where v is near 0, and thus the matrix Q is nearly 
singular. B) Network model for Kalman filtering. Identity feedforward weights 1I map inputs x to a 
recurrent network yet} whose output is used to make predictions. Learning of the recurrent weights 
B is based on Goodall's (1960) rule; learning of the prediction weights is based on the delta rule, 
only using yeO} to make the predictions and y(oo} to change the weights. 

matrix of the uncertainty in Wn as whitening the input process x n . This is inherently 
unsupervised, in that whitening takes place without any reference to the observed rewards 
(or even the innovation). 

Given the approximation, we tested whether f; really whitens Q by by generating Xn from a 
Gaussian distribution, with mean (1,1) and variance v 2II, calculating the long-run average 
value of f;, and assessing whether f = f;Qf; is white. There is no unique measure for 
the deviation of f from being diagonal; as an example, figure lA shows as a function of 
v the largest on- and off-diagonal elements of f . The figure shows that the off-diagonal 
components are comparatively very small, even when v is very small, for which Q has 
an eigenvalue very near to 0 making the whitening matrix nearly undefined. Equally, in 
this case, ~n tends to have very large values, since, looking at equation 4, the growth in 
uncertainty coming from a 2II is not balanced by any observation in the direction (1, -1) 
that is orthogonal to (1,1) . 

Of course, only the long-run average covariance matrix f; whitens Q. We make the further 
approximation of using an on-line estimate of the symmetric whitening matrix as the on­
line estimate of the covariance of the weights ~n . 

4 A network model 

Figure IB shows a network model in which prediction weights wn adapt in a manner that 
is appropriately sensitive to a learned, on-line, estimate of the whitening matrix. The net­
work has two components, a mapping from input x to output y(t), via recurrent feedback 
weights B (the Goodall (1960) whitening filter), and a mapping from y, through a set of 
prediction weights W to an estimate of the reward. The second part of the network is most 
straightforward. The feedforward weights from x to yare just the identity matrix II. There­
fore, the initial value in the hidden layer in response to stimulus Xn is y(O) = X n , and so 
the prediction of reward is just w . y(O) = W . X n . 

The first part of the network is a straightforward implementation of Goodall's whitening 
filter (Goodall, 1960; Atick & Redlich, 1993). The recurrent dynamics in the y-Iayer are 
taken as being purely linear. Therefore, in response to input x (propagated through the 



identity feedforward weights) 

TY = -y+x+By 

and so y( 00) = (II - B)-lX, provided that the inverse exists. Goodall's algorithm changes 
the recurrent weights B using local, anti-Hebbian learning, according to 

tl.B ()( -xy + II - B . (6) 

This rule stabilizes on average when II = (II - B)-lQ[(II - B)-l], that is when (II - B)-l 
is a whitening filter for the correlation matrix Q of the inputs. If B is symmetric, which can 
be guaranteed by making B = (()) initially (Atick & Redlich, 1993), then, by convergence, 
we have (II - B)-l = f:; and, given input Xn to the network 

- -1 
~Xn = (II - B) Xn = Yn(oo) 

Therefore, we can implement a learning rule for the prediction weights akin to the Kalman 
filter (equation 3) using 

(7) 

This is the standard delta rule, except that the predictions are based on Yn(O) X n , 

whereas the weight changes are based on Y n( 00) = f:;xn . The learning rule gets wrong the 
absolute magnitude of the weight changes (since it lacks the Xn . ~n . Xn + T2 term on the 
denominator - but it gets right the direction of the changes. 

5 Results 

Figure 2 shows the result of learning in backward blocking. In association with Tn = 1, first 
stimulus Xn = (1,1) was presented for 20 trials, then stimulus Xn = (1,0) was presented 
for a further 20 trials. Figure 2A shows the development of the weights w~ (solid) and 
w~ (dashed). During the first set of trials, these grow towards 0.5; during the second set, 
they differentiate sharply with the weight associated with the light growing towards 1, and 
that with the sound, which is explained away, growing towards O. Figure 2B shows the 
development of two terms in the estimated covariance matrix. The negative covariance 
between light and sound is evident, and causes the sharp changes in the weights on the 21st 
trial. Figure 2C & D show the values using the exact Kalman filter, showing qualitatively 
similar behavior. 

The increases in the magnitudes of ~~L and ~~s during the first sta~e of backwards block­
ing come from the lack of information in the input about w~ - wn ' despite its continual 
diffusion (from equation 2). Thus backwards blocking is a pathological case. Nevertheless, 
the on-line method for estimating ~ captures the correct behavior. Figures 2 E-H show a 
non-pathological case with observation noise added. The estimates from the model closely 
match those of the exact Kalman filter, a result that is is also true for other non-pathological 
cases. 

6 Discussion 

We have shown how the standard Kalman filter produces explaining away in the space of 
weights, and suggested and proved efficacious a natural network model for implementing 
the Kalman filter. The model mixes unsupervised learning of a whitener for the obser­
vation process (ie the Xn of equation 1), providing the covariance matrix governing the 
uncertainty in the weights, with supervised (or equivalently reinforcement) learning of the 
mean values of the weights . Unsupervised learning is reasonable since the evolution of the 
covariance matrix of the weights is independent of the innovations. The basic result is an 
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Figure 2: Backward blocking in the full model. A) The development of w over 20 trials with 
Xn = (1,1) and 20 with Xn = (1,0) . B) The development of the estimated covariance of the 
weight for the light 'E~L and cross-covariance between the light and the sound 'E~s. The learning 
rates in equations 6 and 7 were both 0.125.C & D) The development of wand 'E from the exact 
Kalman filter with parameters (IT = .09 and T = 0.35). E) The development of w as in A) except 
with multiplicative Gaussian noise added (ie noise with standard deviation 0.35 is added only to the 
representations of stimuli that are present) . F & G) The comparison of w in the model (solid line) and 
in the exact Kalman filter (dashed line), using the sarne parameters for the Kalman filter as in C) and 
D). H) A comparison of the true covariance, 'En (dashed line), with the rescaled estimate, (][ - B)-1 
(solid line). 

approximation, but one that has been shown to match results quite closely. Further work is 
needed to understand how to set the parameters of the Goodall learning rule to match 0'2 

and 7 2 exactly. 

Hinton (personal communication) has suggested an alternative interpretation of Kalman 
filtering based on a heteroassociative novelty filter. Here, the idea is to use the recurrent 
network B only once, rather than to equilibrium, with (as for our model) Yn(O) = Xn, the 
prediction v = wn . Yn(O), Yn(l) = Bn . Xn, and 

b.wn IX Yn(l) (Tn - Wn ' Yn(O)) . 

This gives Bn a similar role to ~n in learning wn . For the novelty filter, 

b. _ Bn . XnXn . Bn 
Bn-- JBn . x n J2 ' 

which makes the network a perfect heteroassociator between Xn and Tn. If we compare 
the update for Bn to that for ~n (equation 4), we can see that it amounts approximately 
to assuming neither observation noise nor drift. Thus, whereas our network model approx­
imates the long-run covariance matrix, the novelty filter approximates the instantaneous 
covariance matrix directly, and could clearly be adapted to take account of noise. Unfortu­
nately, there are few quantitatively precise experimental results on backwards blocking, so 
it is hard to choose between different possible rules. 

There is a further alternative. Sutton (1992) suggested an online way of estimating the 
elements of the covariance matrix, observing that 

E[t5~l = 7 2 + Xn . ~n . Xn (8) 

and so considered using a standard delta rule to fit the square innovation using a quadratic 
input representation ((X~)2, (X~)2 , x~ X x~, 1) .3 The weight associated with the last ele-

3 Although the x~ x x~ term was omitted from Sutton's diagonal approximation to 'En. 



ment, ie the bias, should come to be the observation noise 7 2 ; the weights associated with 
the other elements are just the components of ~n. The most critical concern about this is 
that it is not obvious how to use the resulting covariance matrix to control learning about the 
mean values of the weights. There is also the more theoretical concern that the covariance 
matrix should really be independent of the prediction errors, one manifestation of which is 
that the occurrence of backward blocking in the model of equation 8 is strongly sensitive 
to initial conditions. 

Although backward blocking is a robust phenomenon, particularly in human conditioning 
experiments (Shanks, 1985), it is not observed in all animal conditioning paradigms. One 
possibility for why not is that the anatomical substrate of the cross-modal recurrent network 
(the B weights in the model) is not ubiquitously available. In its absence, y( 00) = y(O) = 
Xn in response to an input X n , and so the network will perform like the standard delta or 
Rescorla-Wagner (Rescorla & Wagner, 1972) rule. 

The Kalman filter is only one part of a more complicated picture for statistically normative 
models of conditioning. It makes for a particularly clear example of what is incomplete 
about some of our own learning rules (notably Kakade & Dayan, 2000) which suggest that, 
at least in some circumstances, learning about the two different stimuli should progress 
completely independently. We are presently trying to integrate on-line and learned com­
petitive and additive effects using ideas from mixture models and Kalman filters. 
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