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Abstract 

The paradigm of Hebbian learning has recently received a novel in­
terpretation with the discovery of synaptic plasticity that depends 
on the relative timing of pre and post synaptic spikes. This paper 
derives a temporally dependent learning rule from the basic princi­
ple of mutual information maximization and studies its relation to 
the experimentally observed plasticity. We find that a supervised 
spike-dependent learning rule sharing similar structure with the ex­
perimentally observed plasticity increases mutual information to a 
stable near optimal level. Moreover, the analysis reveals how the 
temporal structure of time-dependent learning rules is determined 
by the temporal filter applied by neurons over their inputs. These 
results suggest experimental prediction as to the dependency of the 
learning rule on neuronal biophysical parameters 

1 Introduction 
Hebbian plasticity, the major paradigm for learning in computational neuroscience, 
was until a few years ago interpreted as learning by correlated neuronal activity. 
A series of studies have recently shown that changes in synaptic efficacies highly 
depend on the relative timing of the pre- and postsynaptic spikes, as the efficacy 
of a synapse between two excitatory neurons increases when the presynaptic spike 
precedes the postsynaptic one, but decreases otherwise [1-6]. The magnitude of 
these synaptic changes decays roughly exponentially as a function of the time dif­
ference between pre- and post synaptic spikes, with a time constant of few tens of 
milliseconds (results vary between studies, especially with regard to the synaptic 
depression component, compare e.g. [4] and [6]). 

What could be the computational role of this delicate type of plasticity, sometimes 
termed spike-timing dependent plasticity (STDP) ? Several authors suggested an­
swers for this question by modeling STDP and studying its effects on synaptic, 
neural and network dynamics. Importantly, STDP embodies an inherent compe­
tition between incoming inputs, and was shown to result in normalization of total 
incoming synaptic strength [7], maintain the irregularity of neuronal firing [8, 9], 
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and lead to the emergence of synchronous subpopulation firing in recurrent networks 
[10]. It may also play an important role in sequence learning [11, 12]. The dynam­
ics of synaptic efficacies under the operation of STDP strongly depends on whether 
STDP is implemented additively (independent of the baseline synaptic value) or 
multiplicatively (where the change is proportional to the synaptic efficacy) [13]. 

This paper takes a different approach to the study of spike-dependent learning rules: 
while the above studies model STDP and study the model properties, we start by 
deriving a spike-dependent learning rule from first principles within a simple rate 
model and then compare it with the experimentally observed STDP. To derive our 
learning rule, we consider the principle of mutual information maximization. This 
idea, known as the Infomax principle [14], states that the goal of a neural network's 
learning procedure is to maximize the mutual information between its output and 
input. The current paper applies Infomax for a leaky integrator neuron with spiking 
inputs. The derivation suggests computational insights into the dependence of the 
temporal characteristics of STDP on biophysical parameters and shows that STDP 
may serve to maximize mutual information in a network of spiking neurons. 

2 The Model 
We study a network with N input neurons Sl .. SN firing spike trains, and a single 
output (target) neuron Y. At any point in time, the target neuron accumulates its 
inputs with some temporal filter F due to voltage attenuation or synaptic transfer 
function 

N 

Y(t) = L WiXi(t) (1) 
i=l 

where Wi is the synaptic efficacy between the ith input neuron and the target 
neuron, Si(t) = L:t . c5(t - tspike) is the i-th spike train and T is the membrane 
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time constant. The filter F may be used to consider general synaptic transfer 
function and voltage decay effects, but is set here as an example to an exponential 
filter Fr (x) == exp( - x / T). The learning goal is to set the synaptic weights W 
such that M + 1 uncorrelated patterns of input activity ~1/ ('TJ = O .. M) may be 
discriminated using the output. Each pattern determines the firing rates of the 
input neurons, thus S is a noisy realization of ~ due to the stochasticity of the 
point process. The input patterns are presented for periods of length T (on the 
order of tens of milliseconds). At each period, a pattern ~1/ is randomly chosen for 
presentation with probability q1/' where most of the patterns are rare (L:!l q1/ « 1) 
but ~o is abundant and may be thought of as a background noisy pattern. It should 
be stressed that in our model information is coded in the non-stationary rates that 
underlie the input spike trains. As these rates are not observable, any learning must 
depends on the observable input spikes that realize those underlying rates. 

3 Mutual Information Maximization 
Let us focus on a single presentation period (omitting the notation of t), and 
look at the value of Y at the end of this period, Y = L:~l WiXi, with Xi == 
J~T et'/r Si(t')dt'. Denoting by f(Y) the p.d.f. of Y, the input-output mutual 
information [15] in this network is defined by 

I(Y; 'TJ) = h(Y) - h(YI'TJ) h(Y) = - i: f(y)log(f(y))dx (2) 

where h(Y) is the differential entropy of the Y distribution, and h(YI'TJ) is the 
differential entropy given that the network is presented with a known input pattern. 



This mutual information measures how easy it is to decide which input pattern 'TJ 
was presented to the network by observing the network's output Y. 

To calculate the conditional entropy h(YI'TJ) we use the assumption that input 
neurons fire independently and their number is large, thus the input of the tar­
get neuron when the network is presented with the pattern ~11 is normally dis­
tributed f(YI'TJ) = N(J.t11,(711 2) with mean J.t11 =< WXl1 > and variance (711 2 =< 
(W Xl1)(W Xl1)T > - < W Xl1 >2. The brackets denote averaging over the possi­
ble realizations of the inputs Xl1 when the network is presented with the pattern 
~11. To calculate the entropy of Y we note that f (Y) is a mixture of Gaussians, 
each resulting from the presentation of an input pattern and use the assumption 
E!1 ql1 « 1 to approximate the entropy. The details of this derivation are omitted 
due to space considerations and will be presented elsewhere. Differentiating the 
mutual information with regard to Wi we obtain 

with 

8I(Yj'TJ) 
8Wi 
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K' = J.t11-J.t0 
11 - (702 . 

where E(X;:) is the expected value of X;: as averaged over presentation of the ~11 
pattern. The general form of this complex gradient is simplified in the following 
sections together with a discussion of its use for biological learning. 

The derived gradient may be used for a gradient ascent learning rule by repeatedly 
calculating the distribution moments J.t11' (711 that depend on W, and updating the 
weights according to ~ Wi = >. 8~J (Y j 'TJ). This learning rule climbs along the 
gradient and is bound to converge to a local maximum of the mutual information. 
Figure lA plots the mutual information during the operation of the learning rule, 
showing that the network indeed reaches a (possibly local) mutual information 
maximum. Figure IB depicts the changes in output distribution during learning, 
showing that it splits into two segregated bumps: one that corresponds to the ~o 
pattern and another that corresponds to the rest of the patterns. 

4 Learning In A Biological System 

Aiming to obtain a spike-dependent biologically feasible learning rule that maxi­
mizes mutual information, we now turn to approximate the analytical rule derived 
above by a rule that can be implemented in biology. To this end, four steps are 
taken where each step corresponds to a biological constraint and its solution. 

First, biological synapses are limited either to excitatory or inhibitory regimes. 
Since information is believed to be coded in the activity of excitatory neurons, we 
limit the weights W to positive values. 

Secondly, the K terms are global functions of weights and input distributions since 
they depend on the distribution moments J.t11' (71)" To avoid this problem we ap­
proximate the learning rule by replacing {K~ , Kg, K~} with constants {>.~, >.g, >'_~l. 
These constants are set to optimal values, but remain fixed once they are set. We 
have found numerically that high performance (to be demonstrated in section 5) 
may be obtained for a wide regime of these constants. 
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Figure 1: Mutual information and output distribution along learning with the gra­
dient ascent learning rule (Eq. 3). All patterns were constructed by setting 10% 
of the input neurons to fire Poisson spike trains at 40R z, while the rest fire at 
lOR z. Poisson spike trains were simulated by discretizing time into 1 millisecond 
bins. Simulation parameters A = 1 M = 100, N = 1000, qo = 0.9, q'f/ = 0.001, 
T = 20msec. A. Input-output mutual information B. Output distribution after 
100,150,200 and 300 learning steps. Outputs segregate into two distinct bumps: 
one corresponds to the presentation of the ~o pattern and the other corresponds to 
the rest of the patterns. 

Thirdly, summation over patterns embodies a 'batch' mode of learning, requiring 
very large memory to average over multiple presentations. To implement an on­
line learning rule, we replace summation over patterns by pattern-triggered learn­
ing. One should note that the analytical derivation yielded that summation in is 
performed over the rare patterns only (Eq. 3), thus pattern-triggered learning is 
naturally implemented by restricting learning to presentations of rare patterns l . 

Fourthly, the learning rule explicitly depends on E(X) and COV(Y, X) that are not 
observables of the model. We thus replace them by performing stochastic weighted 
averaging over spikes to yield a spike-dependent learning rule. In the case of inhomo­
geneous Poisson spike trains where input neurons fire independently, the covariance 

t t ' - t 
terms obeys Cau(Y,Xi) = WiEr/ 2 (Xi), where Er(X) = Loo e-T-E(S(t'))dt' . The 
expectations E(Xn may be simply estimated by weighted averaging of the observed 
spikes Xi that precede the learning moment. Estimating E(XP) is more difficult 
because, as stated above, learning should be triggered by the rare patterns only. 
Thus, ~o spikes should have an effect only when a rare pattern ~'f/ is presented. A 
possible solution is to use the fact that ~o is highly frequent, (and therefore spikes 
in the vicinity of a ~'f/ presentation are with high probability ~o spikes), to average 
over spikes following a ~'f/ presentation for background activity estimation. These 
spikes can be temporally weighted in many ways: from the computational point 
of view it is beneficial to weigh spikes uniformly along time, but this may require 
long "memory" and is biologically improbable. We thus refrain from suggesting 
a specific weighting for background spikes, and obtain the following rule, that is 

lIn fact, learning rules where learning is also triggered by the presentation of the back­
ground pattern explicitly depend on the prior probabilities Q'1 ' and thus are not robust 
to fluctuations in Q'1. Since such fluctuations strongly reduce the mutual information ob­
tained by these rules, we conclude that pattern-triggered learning should be triggered by 
the rare pattern only. 



activated only when one of the rare patterns (f'I, mem = l..M) is presented 

(4) 

where h,2(S(t')) denote the temporal weighting of f,,0 spikes. It should be noted 
that this learning rule uses rare pattern presentations as an external ("supervised") 
learning signal. The general form of this learning rule and its performance are 
discussed in the next section. 

5 Analyzing The Biologically Feasible Rule 

5.1 Comparing performance 

We have obtained a new spike-dependent learning rule that may be implemented in 
a biological system that approximates an information maximization learning rule. 
But how good are these approximations? Does learning with the biologically feasible 
learning rule increase mutual information? and to what level? The curves in figure 
2A compare the mutual information of the learning rule of Eq. 3 with that of Eq. 
4, as traced in simulation of the learning process. Apparently, the approximated 
learning rule achieves fairly good performance compared to the optimal rule, and 
most of reduction in performance is due to limiting weights to positive values. 

5.2 Interpreting the learning rule structure 

The general form of the learning rule of Eq. 4 is pictorially presented in figure 2B, 
to allow us to inspect the main features of its structure. First, synaptic potentiation 
is temporally weighted in a manner that is determined by the same filter F that the 
neuron applies over its inputs, but learning should apply an average of F and F2 
(it F(t - t')S(t')dt' and t F2(t - t')S(t')dt'). The relative weighting of these two 
components was numerically estimated by simulating the optimal rule of Eq. 3 and 
was found to be on the same order of magnitude. Second, in our model synaptic 
depression is targeted at learning the underlying structure of background activity. 
Our analysis does not restrict the temporal weighting of the depression curve. 

A major difference between the obtained rule and the experimentally observed learn­
ing rule is that in our rule learning is triggered by an external learning signal that 
corresponds to the presentation of rare patterns, while in the experimentally ob­
served rule learning is triggered by the postsynaptic spike. The possible role of the 
postsynaptic spike is discussed in the following section. 

6 Unsupervised Learning 

By now we have considered a learning scenario that used external information telling 
whether the presented pattern is the background pattern or not, to decide whether 
learning should take place. When such learning signal is missing, it is tempting to 
use the postsynaptic spike (signaling the presence of an interesting input pattern) 
as a learning signal. This yields a learning procedure as in Eq. 4 except this 
time learning is triggered by postsynaptic spikes instead of an external signal. The 
resulting learning rule is similar to previous models of the experimentally observed 
STDP as [9, 13, 16]. However, this mechanism will effectively serve learning only 



if the postsynaptic spikes co-occur with the presentation of a rare pattern. Such 
co-occurrence may be achieved by supplying short learning signals at the presence 
of the interesting patterns (e.g. by attentional mechanisms increasing neuronal 
excitability). This will induce learning such that later postsynaptic spikes will be 
triggered by the rare pattern presentation. These issues await further investigation. 
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Figure 2: A. Comparing optimal (Eq. 3) and approximated (Eq. 4) learning rules. 
10% of the input neurons of CI ('T/ > 0) were set to fire at 40Hz, while the rest fire 
at 5H z . ~o-neurons fire at 8Hz yielding similar average input as the fTl patterns. 
Learning rates ratio for Eq. 4 were numerically searched for optimal value, yielding 
).'1/ = 0.15,).0 = 0.05 for the arbitrary choice ).' = 0.1. Rest of parameters as in Fig 
1 except M = 20, N = 2000. B. A pictorial representation of Eq. 4, plotting ~W 
as a function of the time difference between the learning signal time t and the input 
spike time tspike. The potentiation curve (solid line) is the sum of two exponents 
with constants T and !T (dashed lines). The depression curve is not constrained by 
our derivation, thus several examples are brought (dot-dashed lines). 

7 Discussion 
In the framework of information maximization, we have derived a spike-dependent 
learning rule for a leaky integrator neuron. This learning rule achieves near optimal 
mutual information and can in principle be implemented in biological neurons. The 
analytical derivation of this rule allows to obtain insight into the learning rules 
observed experimentally in various preparations. 

The most fundamental result is that time-dependent learning stems from the time­
dependency of neuronal output on its inputs. In our model this is embodied in the 
filter F which a neuron applies over its input spike trains. This filter is determined 
by the biophysical parameters of the neuron, namely its membrane leak, synap­
tic transfer functions and dendritic arbor structure. Our model thus yields direct 
experimental predictions for the way temporal characteristics of the potentiation 
learning curve are determined by the neuronal biophysical parameters. Namely, 
cells with larger membrane constants should exhibit longer synaptic potentiation 
time windows. Interestingly, the time window observed for STDP potentiation in­
deed fits the time windows of an AMP A channel and is also in agreement with 
cortical membrane time constants, as predicted by the current analysis [4, 6]. 

Several features of the theoretically derived rule may have similar functions in the 
experimentally observed rule: In our model synaptic weakening is targeted to learn 
the structure of the background activity. Both synaptic depression and potentiation 
in our model should be triggered by rare pattern presentation to allow near-optimal 



mutual information. IN addition, synaptic changes should depend on the synaptic 
baseline value in a sub-linear manner. The experimental results in this regard are 
still unclear, but theoretical investigations show that this weight dependency has 
large effect on networks dynamics [13]. 

While the learning rule presented in Equation 4 assumes independent firing of input 
neurons , our derivation actually holds for a wider class of inputs. In the case of cor­
related inputs however, the learning rule involves cross-synaptic terms, which may 
be difficult to compute by biological neurons. As STDP is highly sensitive to syn­
chronous inputs, it remains a most interesting question to investigate biologically­
feasible approximations to an Infomax rule for time structured and synchronous 
inputs. 
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