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Abstract 

In this work, we introduce an Interactive Parts (IP) model as an 
alternative to Hidden Markov Models (HMMs). We tested both 
models on a database of on-line cursive script. We show that im­
plementations of HMMs and the IP model, in which all letters are 
assumed to have the same average width, give comparable results. 
However , in contrast to HMMs, the IP model can handle duration 
modeling without an increase in computational complexity. 

1 Introduction 

Hidden Markov models [9] have been a dominant paradigm in speech and handwrit­
ing recognition over the past several decades. The success of HMMs is primarily 
due to their ability to model the statistical and sequential nature of speech and 
handwriting data. However , HMMs have a number of weaknesses [2] . First , dis­
criminative powers of HMMs are weak since the training algorithm is based on 
a Maximum Likelihood Estimate (MLE) criterion, whereas the optimal training 
should be based on a Maximum a Posteriori (MAP) criterion [2] . Second , in most 
HMMs, only first or second order dependencies are assumed. Although explicit du­
ration HMMs model data more accurately, the computational cost of such modeling 
is high [5]. 

To overcome the first problem, it has been suggested [1 , 11,2] that Neural Networks 
(NNs) should be used for estimating emission probabilities. Since NNs cannot deal 
well with sequential data, they are often used in combination with HMMs as hybrid 
NN/HMM systems [2 , 11]. 

In this work, we introduce a new model that provides a possible solution to the 
second problem. In addition, this new objective function can be cast into a NN­
based framework [7 , 8] and can easily deal with the sequential nature of handwriting . 
In our approach, we model an object as a set of local parts arranged at specific 
spatial locations. 
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Figure 1: Effect of shape distortion, and Figure 2: Some of the non-zero elements 
spatial distortions applied on the word of the detection matrix associated with 
"act" . the word "act". 

Parts-based representation has been used in face detection systems [3] and has re­
cently been applied to spotting keywords in cursive handwriting data [4]. Although 
the model proposed in [4] presents a rigorous probabilistic approach, it only mod­
els the positions of key-points and , in order to learn the appropriate statistics, it 
requires many ground-truthed training examples. 

In this work, we focus on modeling one dimensional objects. In our application, an 
object is a handwritten word and its parts are the letters. However, the m ethod we 
propose is quite general and can easily be extended to two dimensional problems. 

2 The Objective Function 

In our approach , we assume that a handwritten pattern is a distorted version of 
one of the dictionary words. Furthermore, we assume that any distortion of a word 
can be expressed as a combination of two types of local distortions [6]: a) shape 
distortions of one or more letters, and b) spatial distortions, also called domain 
warping, as illustrated in Figure 1. In the latter case, the shape of each letter is 
unchanged but the location of one or more letters is perturbed. 

Shape distortions can be captured using "letter detectors". A number of different 
techniques can be used to construct letter detectors. In our implementation, we use 
a neural network-based approach. The output of a letter detector is in the range 
[0 - 1], where 1 corresponds to the undistorted shape of the corresponding letter . 

Since it is not known, a priori, where the letters are located in the pattern, letter 
detectors , for each letter of the alphabet , are arranged over the pattern so that the 
pattern is completely covered by their (overlapping) receptive fields. The outputs 
of the letter detectors form a det ection matrix, Figure 2. Each row of the detection 
matrix represents one letter and each column corresponds to the position of the 
letter within the pattern. An element of the detection matrix is labeled as d!:(x), 
where k denotes the class of the letter, k E [1 , ... ,26], and the x represents the 
column number . In general , the detection matrix contains a large number of "false 
alarms" due to the fact that local segments are often ambiguous. The recognition 
system segments a pattern by selecting one detection matrix element for each letter 



of a given dictionary word 1. 

To measure spatial distortions, one must first choose a reference point from which 
distortions are measured. It is clear that for any choice of reference point, the 
location estimates for letters that are not close to the reference point might be very 
poor. For this reason, we chose a representation in which each letter serves as a 
reference point to estimate the position of every other letter. This representation 
allows translation invariant recognition, is very robust (since it does not depend 
on any single reference point) and very accurate (since it includes nearest neighbor 
reference points). 

To evaluate the level of distortion of a handwritten pattern from a given dictionary 
word, we introduce an objective function. The value of this function represents 
the amount of distortion of the pattern from the dictionary word. We require 
that the objective function reach a minimal value if all the letters that constitute 
the dictionary word are detected with the highest confidence and are located at 
the locations with highest expectation values. Furthermore, we require that the 
dependence of the function on one of its letters be smaller for longer words. 

One function with similar properties to these is the energy function of a system 
of interacting particles, Li,j qiUi,j(Xi, Xj)qj. If we assume that all the letters are 
of the same size, we can map 1) letter detection estimates into "charge" and 2) 
choose interaction terms (potentials) to reflect the expected relative positioning of 
the letters (detection matrix elements). The energy function of the n -th dictionary 
word, is then 

Ln 

En(x) = L di(x;)Ui~j(xi, xj)d'J(xj), (1) 
i ,j=l,iicj 

where Ln is the number of letters in the word, Xi is the location of the i - th letter 
of the n - th dictionary word, and x = (Xl,· .. , XLJ is a particular configuration 
of detection matrix elements. Although this equation has a similar form as, say, 
the Coulomb energy, it is much more complicated. The interaction terms Ui,j are 
more complex than l/r, and each "charge", di(Xi), does not have a fixed value, but 
depends on its location. Note that this energy is a function of a specific choice of 
elements from the detection matrix, x, a specific segmentation of the word. 

Interaction terms can be calculated from training data in a number of different ways. 
One possibility is to use the EM algorithm [9] and do the training for each dictionary 
word. Another possibility is to propagate nearest neighbor estimates. Let us denote 
with the symbol pij (Xi, X j) the (pairwise) probability of finding the j - th letter of 
the n - th dictionary word at distance X = Xj - Xi from the location of the i - th 
letter. A simple way to approximate pairwise probabilities is to find the probability 
distribution of letter widths for each letter and then from single letter distributions 
calculate nearest neighbor pairwise probabilities. Knowing the nearest neighbor 
probabilities, it is then easy to propagate them and find the pairwise probabilities 
between any two letters of any dictionary word [7]. Interaction potentials are related 
to pairwise probabilities (using the Boltzmann distribution and setting j3 = 1/ kT = 
1), as Ui~j(Xi,Xj) = -lnpij(xi,Xj)+C. 

Since the interaction potentials are defined up to a constant, we can selectively 

1 Note that this segmentation corresponds to finding the centers of the letters, as op­
posed to segmenting a word into letters by finding their boundaries. 
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Figure 3: Solid line: an example of 
a pairwise probability distribution for 
neighboring letters. Dashed lines: a fam­
ily of corresponding interaction poten­
tials. 

Figure 4: Modified interaction potential. 
Regions x ::::: a and x :::: b are the "forbid­
den" regions for letter locations. In the 
regions a < x < a' and b' < x < b the 
interaction term is zero. 

change the value of their minima by choosing different values for C, Fig. 3. It 
is important to stress that the only valid domain for the interaction terms is the 
region for which Ui,j < 0 since for each pair ofletters (i, j) we want to simultaneously 
minimize the interaction term Ui,j and to maximize the term di ·dj 2. We will assume 
that there is a value, Pmin, for the pairwise probability below which the estimate of 
the letter location is not reliable. So, for every Pij such that 0 < Pij < Pmin, we set 
Pij = Pmin· We choose the value ofthe constant such that Ui,j = -In(Pmin)+C = 0, 
Fig. 4. In practice, this means that there is an effective range of influence for each 
letter, and beyond that range the influence ofthe letter is zero. In the limiting case, 
one can get a nearest neighbor approximation by appropriately setting Pmin. 

It is clear that the interaction terms put constraints on the possible locations of the 
letters of a given dictionary word. They define "allowed" regions, where the letters 
can be found, unimportant regions, where the influence of a letter on other letters 
is zero, and not-allowed regions (U = (0) , which have zero probability of finding a 
letter in that region, Fig. 4. 

The task of recognition can now be formulated as follows. For a given dictionary 
word, find the configuration of elements from the detection matrix (a specific seg­
mentation ofthe pattern) such that the energy is minimal. Then, in order to find the 
best dictionary word, repeat the previous procedure for every dictionary word and 
associate with the pattern the dictionary word with lowest energy. If we denote by 
X the space of all possible segmentations of the pattern, then the final segmentation 
of the pattern, x*, is given as 

x* = argmin~Ex,nEN(En(x)). 

where the index n runs through the dictionary words. 

3 Implementation and an Overview of the System 

(2) 

An overview of the system is illustrated in Fig. 5. A raw data file, representing a 
handwritten word, contains x and y positions of the pen recorded every 10 millisec­
onds. This input signal is first transformed into strokes, which are defined as lines 
between points with zero velocity in the y direction. Each stroke is characterized by 

2 For Ui,J > 0, increasing di ·dJ would increase, rather than decrease, the energy function. 
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a set of features as suggested in [10]. The preprocessor extracts these features from 
each stroke and supplies them to the neural network. We have built a multi-layer 
feedforward network based on a weight sharing technique to detect letters. This 
particular architecture was proposed by Rumelhart [10]. Similar networks can also 
be found in literature by the name Time Delay Neural Network , (TDNN) [ll]). 
In our implementation, the network has one hidden layer with thirty rows of hid­
den units. For details of the network architecture see [10 , 7]. The output of the 
NN, the detection matrix, is then supplied to the HMM-based and IP model-based 
post-processors, Fig. 5. For both models , we assume that every letter has the same 
average width. 

Interaction Terms. The first approximation for interaction terms is to assume a 
"square well" shape. Each interaction term is then defined with only three parame­
ters , the left boundary a, the right boundary b and the depth of the well, en, which 
are the same for all the nearest neighbor letters, Fig. 7. The lower and upper limits 
for the i - th and j - th non-adjacent interaction terms can then be approximated 
as aij = Ij - il . a and bij = Ij - il . b, respectively. 

Nearest Neighbor Approximation. Since the exact solution of the energy func­
tion given by Eq. (2) is often computationally infeasible (the detection matrices can 
exceed 40 columns in width for long words), one has to use some approximation 
technique. One possible solution is suggested in [7] , where contextual information 
is used to constrain the search space. Another possibility is to revise the energy 
function by considering only nearest neighbor t erms and then solve it exactly using 
a Dynamic Programming (DP) algorithm. We have used DP to find the optimal 
segmentation for each word . We then use this "optimal" configuration of letters 
to calculate the energy given by Eq. (1). It is important to mention that we have 
introduced beginning (B) and end (E) "letters" to mark the beginning and end of 
the pattern, and their detection probabilities are set to some constant value 3 . 

Hidden Markov Models. The goal of the recognition system is to find the dic­
tionary word with the maximum posterior probability, p(w IO) = p(Olw)p(w)/p(O), 

3This is necessary in order to define interaction potentials for single letter words. 



u 

x 

en a b 
-f- '------' 

Figure 7: Square well approximation of 
the interaction potential. Allowed region 
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Figure 8: The probability ofremaining in 
the same state for exactly d time steps: 
HMMs (dashed line) vs. expected prob­
ability (solid line). 

given the handwritten pattern, 6. Since p( 0) and p( w) are the same for all dic­
tionary words, maximizing p(wIO) is equivalent to maximizing p(Olw). To find 
p(Olw), we constructed a left-right (or Bakis) HMM [9] for each dictionary word, 
,\", where each letter was represented with one state. Given a dictionary word (a 
model ,\n), we calculated the maximumlikelihood,p(OI,\n) = Lall Q P(O, QI,\n) = 

Lall Q P(OIQ, ,\n)p(QI,\n), where the summation is done over all possible state se­
quences. We used the forward-backward procedure [9] for calculating the previous 
sum. Emission probabilities were calculated from the detection probabilities using 
Bayes' rule P(Oxlqk) = dk(x)P(Ox)/ P(qk), where P(qk) denotes the frequency of 
the k - th letter in the dictionary and the term P(Ox) is the same for all words 
and can therefore be omitted. Transition probabilities were adjusted until the best 
recognition results were obtained. Recall that we assumed that all letter widths are 
the same and therefore the transition probabilities are independent of letter pairs. 

4 Results and Discussion 

Our dataset (obtained from David Rumelhart [10]) consists of words written by 100 
different writers, where each writer wrote 1000 words. The size of the dictionary is 
1000 words. The neural network was trained on 70 writers (70,000 words) and an 
independent group of writers was used as a cross validation set. We have tested both 
the IP model and HMMs on a group of 10 writers (different from the testing and 
cross-validation groups). The results for each model are depicted in Fig. 6. The IP 
model chose the correct word 79.89% of the time, while HMMs selected the correct 
word 79.44% of the time. Although the overall performance of the two models was 
almost identical, the results differ by several percent on individual writers. This 
suggests that our model could be used in combination with HMMs (e.g. with some 
averaging technique) to improve overall recognition. 

It is important to mention that new dictionary words can be easily added to the 
dictionary and the IP model does not require retraining on the new words (using 
the method of calculating interaction terms suggested in this paper). The only 
information about the new word that has to be supplied to the system is the ordering 
of the letters. Knowing the nearest neighbor pairwise probabilities, pi} (Xi, X j), it is 
easy to calculate the location estimates between any two letters of the new word. 
Furthermore, the IP model can easily recognize words where many of the letters are 



highly distorted or missing. 

In standard first-order HMMs with time-independent transition probabilities, the 
probability of remaining in the i - th state for exactly d time steps is illustrated 
in Fig. 8. The real probability distribution on letter widths is actually similar to a 
Poisson distribution [11), Fig. 8. It has been shown that explicit duration HMMs 
can significantly improve recognition accuracy, but at the expense of a significant 
increase in computational complexity [5] . Our model, on the other hand, can easily 
model arbitrarily complex pairwise probabilities without increasing the computa­
tional complexity (using DP in a nearest neighbor approximation). We think that 
this is one of the biggest advantages of our approach over HMMs. We believe that 
including more precise interaction terms will yield significantly better results (as in 
HMMs) and this work is currently in progress. 
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