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Abstract 

A new incremental learning algorithm is described which approximates 
the maximal margin hyperplane w.r.t. norm p ~ 2 for a set of linearly 
separable data. Our algorithm, called ALMAp (Approximate Large Mar-

gin algorithm w.r.t. norm p), takes 0 ((P~21;;2) corrections to sepa­

rate the data with p-norm margin larger than (1 - 0:) ,,(, where,,( is the 
p-norm margin of the data and X is a bound on the p-norm of the in­
stances. ALMAp avoids quadratic (or higher-order) programming meth­
ods. It is very easy to implement and is as fast as on-line algorithms, such 
as Rosenblatt's perceptron. We report on some experiments comparing 
ALMAp to two incremental algorithms: Perceptron and Li and Long's 
ROMMA. Our algorithm seems to perform quite better than both. The 
accuracy levels achieved by ALMAp are slightly inferior to those obtained 
by Support vector Machines (SVMs). On the other hand, ALMAp is quite 
faster and easier to implement than standard SVMs training algorithms. 

1 Introduction 

A great deal of effort has been devoted in recent years to the study of maximal margin 
classifiers. This interest is largely due to their remarkable generalization ability. In this pa­
per we focus on special maximal margin classifiers, i.e., on maximal margin hyperplanes. 
Briefly, given a set linearly separable data, the maximal margin hyperplane classifies all the 
data correctly and maximizes the minimal distance between the data and the hyperplane. 
If euclidean norm is used to measure the distance then computing the maximal margin hy­
perplane corresponds to the, by now classical, Support Vector Machines (SVMs) training 
problem [3]. This task is naturally formulated as a quadratic programming problem. If an 
arbitrary norm p is used then such a task turns to a more general mathematical program­
ming problem (see, e.g., [15, 16]) to be solved by general purpose (and computationally 
intensive) optimization methods. This more general task arises in feature selection prob­
lems when the target to be learned is sparse. 

A major theme of this paper is to devise simple and efficient algorithms to solve the maxi­
mal margin hyperplane problem. The paper has two main contributions. The first contribu­
tion is a new efficient algorithm which approximates the maximal margin hyperplane w.r.t. 



norm p to any given accuracy. We call this algorithm ALMAp (Approximate Large Margin 
algorithm w.r.t. norm p). ALMAp is naturally viewed as an on-line algorithm, i.e., as an 
algorithm which processes the examples one at a time. A distinguishing feature of ALMAp 
is that its relevant parameters (such as the learning rate) are dynamically adjusted over 
time. In this sense, ALMAp is a refinement of the on-line algorithms recently introduced in 
[2]. Moreover, ALMA2 (i.e., ALMAp with p = 2) is a perceptron-like algorithm; the oper­
ations it performs can be expressed as dot products, so that we can replace them by kernel 
functions evaluations. ALMA2 approximately solves the SVMs training problem, avoiding 
quadratic programming. As far as theoretical performance is concerned, ALMA2 achieves 
essentially the same bound on the number of corrections as the one obtained by a version 
of Li and Long's ROMMA algorithm [12], though the two algorithms are different. l In the 
case that p is logarithmic in the dimension of the instance space (as in [6]) ALMAp yields 
results which are similar to those obtained by estimators based on linear programming (see 
[1, Chapter 14]). 

The second contribution of this paper is an experimental investigation of ALMA2 on the 
problem of handwritten digit recognition. For the sake of comparison, we followed the 
experimental setting described in [3,4,12]. We ran ALMA2 with polynomial kernels, using 
both the last and the voted hypotheses (as in [4]), and we compared our results to those 
described in [3, 4, 12]. We found that voted ALMA2 generalizes quite better than both 
ROMMA and the voted Perceptron algorithm, but slightly worse than standard SVMs. On 
the other hand ALMA2 is much faster and easier to implement than standard SVMs training 
algorithms. 

For related work on SVMs (with p = 2), see Friess et al. [5], Platt [17] and references 
therein. 

The next section defines our major notation and recalls some basic preliminaries. In Sec­
tion 3 we describe ALMAp and claim its theoretical properties. Section 4 describes our 
experimental comparison. Concluding remarks are given in the last section. 

2 Preliminaries and notation 

An example is a pair (x, y), where x is an instance belonging to n nand y E {-1, + 1 } 
is the binary label associated with x. A weight vector w = (WI, ... , wn) E nn rep­
resents an n-dimensional hyperplane passing through the origin. We associate with w a 
linear threshold classifier with threshold zero: w : x -t sign( w . x) = 1 if w . x ~ 0 
and = -1 otherwise. When p ~ 1 we denote by Ilwllp the p-norm of w, i.e., Ilwllp 

= (E~=llwiIP)llp (also, Ilwll oo = limp-+oo (E~=llwiIP)llp = maxi IWil). We say that 
q is dual to p if ~ + ~ = 1 holds. For instance, the I-norm is dual to the oo-norm and 
the 2-norm is self-dual. In this paper we assume that p and q are some pair of dual values, 
with p ~ 2. We use p-norms for instances and q-norms for weight vectors. The (normal­
ized) p-norm margin (or just the margin, if p is clear from the surrounding context) of a 
hyperplane w with Ilwll q :s; 1 on example (x,y) is defined as ~I~I'I~' If this margin is 

positive2 then w classifies (x, y) correctly. Notice that from Holder's inequality we have 

yw· x:S; Iw, xl :s; Ilwll q Ilxllp :s; Ilxllp. Hence ~I~I 'I~ E [-1,1] . 

Our goal is to approximate the maximal p-norm margin hyperplane for a set of examples 
(the training set). For this purpose, we use terminology and analytical tools from the on-line 

lIn fact, algorithms such as ROMMA and the one contained in Kowalczyk [10] have been specif­
ically designed for euclidean norm. Any straightforward extension of these algorithms to a general 
norm p seems to require numerical methods . 

2We assume that w . x = 0 yields a wrong classification, independent of y. 



learning literature. We focus on an on-line learning model introduced by Littlestone [14]. 
An on-line learning algorithm processes the examples one at a time in trials. In each trial, 
the algorithm observes an instance x and is required to predict the label y associated with 
x . We denote the prediction by f). The prediction f) combines the current instance x with 
the current internal state of the algorithm. In our case this state is essentially a weight vector 
w , representing the algorithm's current hypothesis about the maximal margin hyperplane. 
After the prediction is made, the true value of y is revealed and the algorithm suffers a loss, 
measuring the "distance" between the prediction f) and the label y. Then the algorithm 
updates its internal state. 

In this paper the prediction f) can be seen as the linear function f) = w . x and the loss is 
a margin-based 0-1 Loss: the loss of W on example (x, y) is 1 if ~I~I'I~ ~ (1 - a) "y and 

o otherwise, for suitably chosen a, "y E [0,1]. Therefore, if Ilwll q ~ 1 then the algorithm 
incurs positive loss if and only if w classifies (x, y) with (p-norm) margin not larger than 
(1- a) "y. The on-line algorithms are typically loss driven, i.e., they do update their internal 
state only in those trials where they suffer a positive loss. We call a correction a trial where 
this occurs. In the special case when a = 1 a correction is a mistaken trial and a loss 
driven algorithm turns to a mistake driven [14] algorithm. Throughout the paper we use the 
subscript t for x and y to denote the instance and the label processed in trial t . We use the 
subscript k for those variables, such as the algorithm's weight vectorw, which are updated 
only within a correction. In particular, Wk denotes the algorithm's weight vector after k-l 
corrections (so that WI is the initial weight vector). The goal of the on-line algorithm is to 
bound the cumulative loss (i .e., the total number of corrections or mistakes) it suffers on an 
arbitrary sequence of examples S = (Xl, yd, ... , (XT, YT). If S is linearly separable with 
margin "y and we pick a < 1 then a bounded loss clearly implies convergence in a finite 
number of steps to (an approximation of) the maximal margin hyperplane for S. 

3 The approximate large margin algorithm ALMAp 

ALMAp is a large margin variant of the p-norm Perceptron algorithm 3 [8, 6], and is similar 
in spirit to the variable learning rate algorithms introduced in [2]. We analyze ALMAp by 
giving upper bounds on the number of corrections. 

The main theoretical result of this paper is Theorem 1 below. This theorem has two parts. 
Part 1 bounds the number of corrections in the linearly separable case only. In the special 
case when p = 2 this bound is very similar to the one proven by Li and Long for a version 
of ROMMA [12]. Part 2 holds for an arbitrary sequence of examples. A bound which is 
very close to the one proven in [8, 6] for the (constant learning rate) p-norm Perceptron 
algorithm is obtained as a special case. Despite this theoretical similarity, the experiments 
we report in Section 4 show that using our margin-sensitive variable learning rate algorithm 
yields a clear increase in performance. 

In order to define our algorithm, we need to recall the following mapping f from [6] (a 
p-indexing for f is understood): f : nn -t nn, f = (h, ... , fn), where 

h(w) = sign(wi) IWilq-1 / Ilwllr2, w = (WI, ... , Wn) E nn. 

Observe that p = 2 yields the identify function. The (unique) inverse f-1 of f is [6] 
f-1 : nn -t nn, f-1 = U11, ... , f;;l), where 

f i- 1((}) = sign(Bi) IBi lp-1 / 11(}11~-2, () = (B1, ... ,Bn) E nn, 

namely, f-1 is obtained from f by replacing q with p. 

3The p-norm Perceptron algorithm is a generalization of the classical Perceptron algorithm [18]: 
p-norm Perceptron is actually Perceptron when p = 2. 



Algorithm ALMAp(aj B, C) 
with a E (0,1], B, C > O. 
Initialization: Initial weight vector WI = 0; k = 1. 
Fort = 1, ... ,Tdo: 
Get example (Xt, Yt) E nn x {-I, +1} and update weights as follows: 

Set 'Yk = B JP=l ~j 
If Yt Wk·Xt <_ (1 - a) ""k then: Ilxtllp I 

'11 - C I 
'Ik - v'P=I IIXtllp Vii' 

W~ = f-l(f(Wk) + 'T/k Yt Xt), 

Wk+1 = w~/max{l, Ilw~llq}, 
k+-k+1. 

Figure 1: The approximate large margin algorithm ALMAp . 

ALMAp is described in Figure 1. The algorithm is parameterized by a E (0,1], B > 0 
and C > O. The parameter a measures the degree of approximation to the optimal margin 
hyperplane, while Band C might be considered as tuning parameters. Their use will be 
made clear in Theorem 1 below. Let W = {w E nn : Ilwllq :::; I}. ALMAp maintains a 
vector Wk of n weights in W. It starts from WI = O. At time t the algorithm processes the 
example (Xt, Yt). If the current weight vector Wk classifies (Xt, Yt) with margin not larger 
than (1 - a) 'Yk then a correction occurs. The update rule4 has two main steps. The first 
step gives w~ through the classical update of a (p-norm) perceptron-like algorithm (notice, 
however, that the learning rate 'T/k scales with k, the number of corrections occurred so 
far). The second step gives Wk+1 by projecting w~ onto W : Wk+1 = wklllw~llq if 
Ilw~llq > 1 and Wk+1 = w~ otherwise. The projection step makes the new weight vector 
Wk+1 belong to W. 

The following theorem, whose proof is omitted due to space limitations, has two parts. In 
part 1 we treat the separable case. Here we claim that a special choice of the parameters 
Band C gives rise to an algorithm which approximates the maximal margin hyperplane 
to any given accurary a. In part 2 we claim that if a suitable relationship between the 
parameters Band C is satisfied then a bound on the number of corrections can be proven 
in the general (nonseparable) case. The bound of part 2 is in terms of the margin-based 
quantity V-y(Uj (x,y)) = max{O,'Y - rl~i~}' 'Y > O. (Here a p-indexing for V-y is 
understood). V-y is called deviation in [4] and linear hinge loss in [7]. 

Notice that Band C in part 1 do not meet the requirements given in part 2. On the other 
hand, in the separable case Band C chosen in part 2 do not yield a hyperplane which is 
arbitrarily (up to a small a) close to the maximal margin hyperplane. 

Theorem 1 Let W = {w E nn : Ilwllq :::; I}, S = ((xI,yd, .'" (XT,YT)) E (nn x 
{ -1, + 1 } ) T, and M be the set of corrections of ALM Ap( aj B, C) running on S (i. e., the 
set of trials t such that Ytll~t\l~t :::; (1 - a hk). 

1. Let 'Y* = maxWEW mint=I, ... ,T Y{I~itt > O. Then ALMAp(aj v'8/a, y'2) achieves 

thefollowing bouncP on IMI: 

2 (p - 1) (2 ) 2 8 ( p - 1 ) 
IMI:::; (,,(*)2 ~ -1 + ~ - 4 = 0 a2 (,,(*)2 . 

41n the degenerate case that Xt = 0 no update takes place. 
5We did not optimize the constants here. 

(1) 



Furthermore, throughout the run of ALMAp(a; VS/a, v'2) we have 'Yk ~ 'Y*. Hence (1) is 

also an upper bound on the number of trials t such that Vil~,\I~' :-::; (1 - a) 'Y*. 

2. Let the parameters Band C in Figure 1 satisfy the equation6 

C2 + 2 (1- a) B C = l. 
Then for any u E W, ALMAp( a; B, C) achieves the following bound on 1M I, holding for 

any'Y> 0, where p2 = J2~2: 

Observe that when a = 1 the above inequality turns to a bound on the number of mistaken 
trials. In such a case the value of 'Yk (in particular; the value of B) is immaterial, while C 
is forced to be 1. 0 

When p = 2 the computations performed by ALMAp essentially involve only dot products 
(recall that p = 2 yields q = 2 and [ = [-1 = identity). Thus the generalization of 
ALMA2 to the kernel case is quite standard. In fact, the linear combination W k+1 . X can 
be computed recursively, since Wk+1 . x = W k ·Xt'1 k V,X,.X. Here the denominator Nk+1 

k+l 

equals max{1, Ilw~112} and the norm Ilw~J12 is again computed recursively by Ilw~ll~ = 
Ilw~_lIIVN~ + 2'T/k YtWk' Xt + 'T/~ Ilxtl12' where the dot product Wk' Xt is taken from 
the k-th correction (the trial where the k-th weight update did occur). 

4 Experimental results 

We did some experiments running ALMA2 on the well-known MNIST OCR database.? 
Each example in this database consists of a 28x28 matrix representing a digitalized image 
of a handwritten digit, along with a {0,1, ... ,9}-valued label. Each entry in this matrix is a 
value in {O, 1, ... ,255}, representing a grey level. The database has 60000 training examples 
and 10000 test examples. The best accuracy results for this dataset are those obtained by 
LeCun et al. [11] through boosting on top of the neural net LeNet4. They reported a test 
error rate of 0.7%. A soft margin SVM achieved an error rate of 1.1 % [3]. 

In our experiments we used ALMA2(a; -i-, v'2) with different values of a. In the follow­
ing ALMA2(a) is shorthand for ALMA2(a; -i-, v'2). We compared to SVMs, the Perceptron 
algorithm and the Perceptron-like algorithm ROMMA [12]. We followed closely the ex­
perimental setting described in [3, 4, 12]. We used a polynomial kernel K of the form 
K(x, y) = (1 + x . y)d, with d = 4. (This choice was best in [4] and was also made in 
[3, 12].) However, we did not investigate any careful tuning of scaling factors. In particular, 
we did not determine the best instance scaling factor s for our algorithm (this corresponds 
to using the kernel K (x, y) = (1 + x . y / S )d). In our experiments we set s = 255. This 
was actually the best choice in [12] for the Perceptron algorithm. We reduced the lO-class 
problem to 10 binary problems . Classification is made according to the maximum output 
of the 10 binary classifiers. The results are summarized in Table 1. As in [4], the output 
of a binary classifier is based on either the last hypothesis produced by the algorithms (de­
noted by "last" in Table 1) or Helmbold and Warmuth's [9] leave-one-out voted hypothesis 
(denoted by "voted"). We refer the reader to [4] for details. We trained the algorithms by 
cycling up to 3 times ("epochs") over the training set. All the results shown in Table 1 
are averaged over 10 random permutations of the training sequence. The columns marked 

6Notice that Band C in part 1 do not satisfy this relationship. 
7 Available on Y. LeCun's home page: http://www.research.att.com/ ... yann/ocr/mnisti. 



"Corr's" give the total number of corrections made in the training phase for the 10 labels. 
The first three rows of Table 1 are taken from [4, 12, 13]. The first two rows refer to the 
Perceptron algorithm,8 while the third one refers to the best 9 noise-controlled (NC) version 
of ROMMA, called "aggressive ROMMA". Our own experimental results are given in the 
last six rows. 

Among these Perceptron-like algorithms, ALMA2 "voted" seems to be the most accurate. 
The standard deviations about our averages are reasonably small. Those concerning test 
errors range in (0.03%,0.09%). These results also show how accuracy and running time 
(as well as sparsity) can be traded-off against each other in a transparent way. The accuracy 
of our algorithm is slightly worse than SVMs'. On the other hand, our algorithm is quite 
faster and easier to implement than previous implementations of SVMs, such as those given 
in [17,5] . An interesting features of ALMA2 is that its approximate solution relies on fewer 
support vectors than the SVM solution. 

We found the accuracy of 1.77 for ALMA2(1.0) fairly remarkable, considering that it has 
been obtained by sweeping through the examples just once for each of the ten classes. 
In fact, the algorithm is rather fast: training for one epoch the ten binary classifiers of 
ALMA2(1.0) takes on average 2.3 hours and the corresponding testing time is on aver­
age about 40 minutes. (All our experiments have been performed on a PC with a single 
Pentium® III MMX processor running at 447 Mhz.) 

5 Concluding Remarks 

In the full paper we will give more extensive experimental results for ALMA2 and ALMAp 
with p > 2. One drawback of ALMAp'S approximate solution is the absence of a bias term 
(i.e., a nonzero threshold). This seems to make little difference for MNIST dataset, but 
there are cases when a biased maximal margin hyperplane generalizes quite better than an 
unbiased one. It is not clear to us how to incorporate the SVMs' bias term in our algorithm. 
We leave this as an open problem. 

Table 1: Experimental results on MNIST database. "TestErr" denotes the fraction of mis­
classified patterns in the test set, while "Corr's" gives the total number of training correc­
tions for the 10 labels. Recall that voting takes place during the testing phase. Thus the 
number of corrections of "last" is the same as the number of corrections of "voted". 

1 Epoch 2 Epochs 3 Epochs 
TestErr Corr's TestErr Corr's TestErr Corr's 

Perceptron "last" 2.71% 7901 2.14% 10421 2.03% 11787 
"voted" 2.23% 7901 1.86% 10421 1.76% 11787 

agg-ROMMA(NC) ("last") 2.05% 30088 1.76% 44495 1.67% 58583 
ALMA2(1.0) "last" 2.52% 7454 2.01% 9658 1.86% 10934 

"voted" 1.77% 7454 1.52% 9658 1.47% 10934 
ALMA2(0.9) "last" 2.10% 9911 1.74% 12711 1.64% 14244 

"voted" 1.69% 9911 1.49% 12711 1.40% 14244 
ALMA2(0.8) "last" 1.98% 12810 1.72% 16464 1.60% 18528 

"voted" 1.68% 12810 1.44% 16464 1.35% 18528 

8These results have been obtained with no noise control. It is not clear to us how to incorporate any 
noise control mechanism into the classical Perceptron algorithm. The method employed in [10, 12] 
does not seem helpful in this case, at least for the first epoch. 

9 According to [12] , ROMMA's last hypothesis seems to perform better than ROMMA's voted 
hypothesis. 
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