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Abstract 

An active set strategy is applied to the dual of a simple reformula­
tion of the standard quadratic program of a linear support vector 
machine. This application generates a fast new dual algorithm 
that consists of solving a finite number of linear equations, with a 
typically large dimensionality equal to the number of points to be 
classified. However, by making novel use of the Sherman-Morrison­
Woodbury formula , a much smaller matrix of the order of the orig­
inal input space is inverted at each step. Thus, a problem with a 
32-dimensional input space and 7 million points required inverting 
positive definite symmetric matrices of size 33 x 33 with a total run­
ning time of 96 minutes on a 400 MHz Pentium II. The algorithm 
requires no specialized quadratic or linear programming code, but 
merely a linear equation solver which is publicly available. 

1 Introduction 

Support vector machines (SVMs) [23, 5, 14, 12] are powerful tools for data classifi­
cation. Classification is achieved by a linear or nonlinear separating surface in the 
input space of the dataset. In this work we propose a very fast simple algorithm, 
based on an active set strategy for solving quadratic programs with bounds [18]. 
The algorithm is capable of accurately solving problems with millions of points and 
requires nothing more complicated than a commonly available linear equation solver 
[17, 1, 6] for a typically small (100) dimensional input space of the problem. 

Key to our approach are the following two changes to the standard linear SVM: 

1. Maximize the margin (distance) between the parallel separating planes with 
respect to both orientation (w) as well as location relative to the origin b). 
See equation (7) below. Such an approach was also successfully utilized in 
the successive overrelaxation (SOR) approach of [15] as well as the smooth 
support vector machine (SSVM) approach of [12]. 

2. The error in the soft margin (y) is minimized using the 2-norm squared 
instead of the conventional 1-norm. See equation (7) . Such an approach 
has also been used successfully in generating virtual support vectors [4]. 



These simple, but fundamental changes, lead to a considerably simpler positive 
definite dual problem with nonnegativity constraints only. See equation (8). 

In Section 2 of the paper we begin with the standard SVM formulation and its 
dual and then give our formulation and its simpler dual. We corroborate with solid 
computational evidence that our simpler formulation does not compromise on gen­
eralization ability as evidenced by numerical tests in Section 4 on 6 public datasets. 
See Table 1. Section 3 gives our active support vector machine (ASVM) Algorithm 
3.1 which consists of solving a system of linear equations in m dual variables with 
a positive definite matrix. By invoking the Sherman-Morrison-Woodbury (SMW) 
formula (1) we need only invert an (n + 1) x (n + 1) matrix where n is the dimen­
sionality of the input space. This is a key feature of our approach that allows us to 
solve problems with millions of points by merely inverting much smaller matrices of 
the order of n. In concurrent work [8] Ferris and Munson also use the SMW formula 
but in conjunction with an interior point approach to solve massive problems based 
on our formulation (8) as well as the conventional formulation (6). Burges [3] has 
also used an active set method, but applied to the standard SVM formulation (2) 
instead of (7) as we do here. Both this work and Burges ' appeal, in different ways, 
to the active set computational strategy of More and Toraldo [18]. We note that 
an active set computational strategy bears no relation to active learning. Section 
4 describes our numerical results which indicate that the ASVM formulation has a 
tenfold testing correctness that is as good as the ordinary SVM, and has the capa­
bility of accurately solving massive problems with millions of points that cannot be 
attacked by standard methods for ordinary SVMs. 

We now describe our notation and give some background material. All vectors will 
be column vectors unless transposed to a row vector by a prime I. For a vector 
x E Rn, x+ denotes the vector in Rn with all of its negative components set to 
zero. The notation A E Rm xn will signify a real m x n matrix. For such a matrix 
A' will denote the transpose of A and Ai will denote the i-th row of A. A vector 
of ones or zeroes in a real space of arbitrary dimension will be denoted by e or 
0, respectively. The identity matrix of arbitrary dimension will be denoted by I. 
For two vectors x and y in Rn, x ..1 y denotes orthogonality, that is x ' y = O. For 
U E R m, Q E Rm xm and B C {I, 2, ... , m}, UB denotes UiEB, QB denotes QiEB 
and QBB denotes a principal submatrix of Q with rows i E B and columns j E B. 
The notation argminxEs f(x) denotes the set of minimizers in the set S of the 
real-valued function f defined on S. We use := to denote definition. The 2-norm 
of a matrix Q will be denoted by IIQI12. A separating plane, with respect to two 
given point sets A and B in Rn , is a plane that attempts to separate Rn into two 
halfspaces such that each open halfspace contains points mostly of A or B. A special 
case of the Sherman-Morrison-Woodbury (SMW) formula [9] will be utilized: 

(Ilv + HH') -l = v(I - H(Ilv + H'H)-l H'), (1) 

where v is a positive number and H is an arbitrary m x k matrix. This formula 
enables us to invert a large m x m matrix by merely inverting a smaller k x k matrix. 

2 The Linear Support Vector Machine 

We consider the problem of classifying m points in the n-dimensional real space 
R n , represented by the m x n matrix A, according to membership of each point Ai 
in the class A+ or A- as specified by a given m x m diagonal matrix D with +l 's 
or -1 's along its diagonal. For this problem the standard SVM with a linear kernel 
[23, 5] is given by the following quadratic program with parameter v > 0: 

. 1 
mm ve'y + -w'w s.t. D(Aw - e-y) + y 2:: e, y 2:: O. (2) 
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Figure 1: The bounding planes (3) with a soft (i.e. with some errors) margin 
2/llwI12, and the plane (4) approximately separating A+ from A-. 

Here w is the normal to the bounding planes: 

x'w = 'Y ± 1 (3) 

and'Y determines their location relative to the origin (Figure 1.) The plane x'w = 
'Y + 1 bounds the A+ points, possibly with error, and the plane x'w = 'Y -1 bounds 
the A - points, also possibly with some error. The separating surface is the plane: 

x'w = 'Y , (4) 

midway between the bounding planes (3). The quadratic term in (2), is twice the 
reciprocal of the square of the 2-norm distance 2/llw112 between the two bounding 
planes of (3) (see Figure 1). This term maximizes this distance which is often called 
the "margin". If the classes are linearly inseparable, as depicted in Figure 1, then 
the two planes bound the two classes with a "soft margin". That is, they bound each 
set approximately with some error determined by the nonnegative error variable y: 

~ 'Y + 1, for Dii = 1, 
::; 'Y - 1, for Dii = - 1. 

(5) 

Traditionally the I-norm of the error variable y is minimized parametrically with 
weight v in (2) resulting in an approximate separation as depicted in Figure 1. The 
dual to the standard quadratic linear SVM (2) [13, 22, 14, 7] is the following: 

. 1 
mill - u'DAA'Du - e'u s.t. e'Du = 0, 0 < u < ve. 

uER=2 - -
(6) 

The variables (w, 'Y) of the primal problem which determine the separating surface 
(4) can be obtained from the solution of the dual problem above [15, Eqns. 5 and 
7]. We note immediately that the matrix DAA'D appearing in the dual objective 
function (6) is not positive definite in general because typically m > > n. Also, 
there is an equality constraint present, in addition to bound constraints, which for 
large problems necessitates special computational procedures such as SMO [21]. 
Furthermore, a one-dimensional optimization problem [15] must be solved in order 
to determine the locator 'Y of the separating surface (4). In order to overcome all 
these difficulties as well as that of dealing with the necessity of having to essentially 
invert a very large matrix of the order of m x m , we propose the following simple 
but critical modification of the standard SVM formulation (2). We change Il y lll to 
Ilyll§ which makes the constraint y ~ 0 redundant. We also append the term 'Y2 to 
w'w. This in effect maximizes the margin between the parallel separating planes 
(3) with respect to both wand 'Y [15], that is with respect to both orientation and 



location of the planes, rather that just with respect to w which merely determines 
the orientation of the plane. This leads to the following reformulation of the SVM: 

y'y 1 
min v- + -(w'w + ,2) s.t. D(Aw - er) + y ~ e. (7) 

(w ,'Y,y)ERn+l+", 2 2 

the dual of this problem is [13]: 
1 I 

min -u'( - + D(AA' + ee')D)u - e'u. 
O~uER'" 2 v 

(8) 

The variables (w,,) of the primal problem which determine the separating surface 
(4) are recovered directly from the solution of the dual (8) above by the relations: 

w=A'Du, y=u/v, ,=-e'Du. (9) 
We immediately note that the matrix appearing in the dual objective function is 
positive definite and that there is no equality constraint and no upper bound on the 
dual variable u. The only constraint present is a simple nonnegativity one. These 
facts lead us to our simple finite active set algorithm which requires nothing more 
sophisticated than inverting an (n + 1) x (n + 1) matrix at each iteration in order 
to solve the dual problem (8). 

3 ASVM (Active Support Vector Machine) Algorithm 

The algorithm consists of determining a partition of the dual variable u into nonbasic 
and basic variables. The nonbasic variables are those which are set to zero. The 
values of the basic variables are determined by finding the gradient of the objective 
function of (8) with respect to these variables, setting this gradient equal to zero, and 
solving the resulting linear equations for the basic variables. If any basic variable 
takes on a negative value after solving the linear equations, it is set to zero and 
becomes nonbasic. This is the essence of the algorithm. In order to make the 
a lgorithm converge and terminate, a few additional safeguards need to be put in 
place in order to a llow us to invoke the More-Toraldo finite termination result [18]. 
The other key feature of the algorithm is a computational one and makes use of the 
SMW formula. This feature allows us to invert an (n + 1) x (n + 1) matrix at each 
step instead of a much bigger matrix of order m x m. 

Before stating our a lgorithm we define two matrices to simplifY notation as follows: 

H = D[A - e], Q = I /v + HH'. (10) 

With these definitions the dual problem (8) becomes 
. 1 

mm f(u):= -u'Qu - eu . (11) 
O~uER'" 2 

It will be understood that within the ASVM Algorithm, Q - 1 will always be evalu­
ated using the SMW formula and hence only an (n+l) x (n+l) matrix is inverted. 
We state our algorithm now. Note that commented (%) parts of the algorithm are 
not needed in general and were rarely used in our numerical results presented in 
Section 4. The essence of the algorithm is displayed in the two boxes below. 

Algorithm 3.1 Active SVM (ASVM) Algorithm for (8). 

(0) Start with UO := (Q - 1e)+. For i = 1,2, .. . , having u i compute Ui+1 as 
Ifollows. 

(1) Define Bi := {j I u; > a}, N i := {.i I u~ = a}. 
(2) Determine 

Ui+l .- (Q-1 e·) u i+1.- a Bi ' - BiBi B ' +, Ni .- . 

Stop if Ui+1 is the global solution, that is if a ~ Ui+1 -.l QUi+1 - e ~ a. 



(2a) % If f(uiH ) ~ f(u i ), then go to (4a). 

(2b) % If 0 :s; Ut.~l .1 QBi+1Bi+l nt.~ 1 -eBi+1 ~ 0, then UH1 is a global solution 
on the face of active constraints: UNi = O. Set u i := uiH and go to (4b). 

(3) ISet i := i + 1 and go to (1). I 

(4a) % Move in the direction of the global minimum on the face of ac-
t · t· t 0 S t -HI Q - l d H I .-we cons razn s, UNi = . e UBi := BiBi eBi an UBi 

argmino9 5. df(uki + ).(ut.1 - nki)) I nki + ).(ut.1 - Uki ) ~ O}. If 
U~+1 = 0 for some j E B i , set i := i + 1 and go to (1) . Otherwise UH1 is a 
global minimum on the face UNi = 0, and go to (4b). 

(4b) % Iterate a gradient projection step. Set k := 0 and uk := u i . Iterate 
Uk+l:= argminO<A<l f(uk - ).(uk -(Quk -e))+), k:= k + l untilf(uk) < 
f(11/). Set uiH ::: ilk. Set i:= i + 1 and go to (1). 

Remark 3.2 All commented (%) parts of the algorithm are optional and are not 
usually implemented unless the algorithm gets stuck, which it rarely did on our 
examples. Hence our algorithm is particularly simple and consists of steps (0), 
(1),(2) and (3). The commented parts were inserted in order to comply with the 
active set strategy of Morr!-Toraldo result [18] for which they give finite termination. 

Remark 3.3 The iteration in step (4b) is a gradient projection step which is guar­
anteed to converge to the global solution of (8) [2, pp 223-225] and is placed here to 
ensure that the strict inequality f(u k) < f(u') eventually holds as required in [18]. 
Similarly, the step in (4a) ensures that the function value does not increase when it 
remains on the same face, in compliance with [18, Algortihm BCQP(b)j. 

4 Numerical Implementation and Comparisons 

We implemented ASVM in Visual C++ 6.0 under Windows NT 4.0. The experi­
ments were run on the UW-Madison Data Mining Institute Locop2 machine, which 
utilizes a 400 MHz Pentium II Xeon Processor and a maximum of 2 Gigabytes of 
memory available per process. We wrote all the code ourselves except for the linear 
equation solver, for which we used CLAPACK [1, 6]. Our stopping criterion for 
ASVM is triggered when the error bound residual [16] Ilu - (u - Qu + e)+ II, which 
is zero at the solution of (11) , goes below O.l. 

The first set of experiments are designed to show that our reformulation (8) of 
the SVM (7) and its associated algorithm ASVM yield similar performance to the 
standard SVM (2) , referred to here as SVM-QP. For six datasets available from the 
UCI Machine Learning Repository [19], we performed tenfold cross validation in 
order to compare test set accuracies between ASVM and SVM-QP. We implemented 
SVM-QP using the high-performing CPLEX barrier quadratic programming solver 
[10], and utilized a tuning set for both algorithms to find the optimal value of the 
parameter v , using the default stopping criterion of CPLEX. Altering the CPLEX 
default stopping criterion to match that of ASVM did not result in significant change 
in timing relative to ASVM, but did reduce test set correctness. 

In order to obtain additional timing comparison information, we also ran the well­
known SVM optimized algorithm SVM1ight [11]. Joachims, the author of SVM1ight , 

provided us with the newest version of the software (Version 3.lOb) and advice on 
setting the parameters. All features for these experiments were normalized to the 
range [-1, + 1] as recommended in the SVM1ight documentation. We chose to use 



Dataset Training Testing Time Dataset Training Testing Time 

m x n 1\lqorithm Correctness Correctness CPU sec) m x n ~Iqorithm Correctness Correctness (CPU sec) 

Liver Disorders CPLEX 70 .76% 68.41% 7.87 Ionosphere CPLEX 92.81% 88.60% 9.84 

~VMf~ht 70.37% 68.12% 0.26 ~VMf~ht 92.81% 88.60% 0.23 
345 x 6 ",SVM 70.40% 67.25% 0.03 351 x 34 ",SVM 93.29% 87.75% 0.26 

Cleveland Heart CPLEX 87.50% 64.20% 4.17 ic Tae Toe CPLEX 65.34% 65.34% 206.52 

~VMf~ht 87.50% 64.20% 0.17 ~VMf~ht 65.34% 65.34% 0.23 
297 x 13 SVM 87.24% 85.56% 0.05 958 x 9 SVM 70.27% 69.72% 0.05 

Pima Diabetes CPLEX 77.36% 76.95% 128.90 Votes CPLEX 96.02% 95.85% 27.26 

~VMf~ht 77.36% 76.95% 0.19 ~VMf~ht 96.02% 95.85% 0.06 

768 x 8 SVM 78.04% 78.12% 0.08 435 x 16 SVM 96.73% 96.07% 0.09 

Table 1: ASVM compared with conventional SVM-QP (CPLEX and SVM1ight ) 

on VCI datasets. ASVM test correctness is comparable to SVM-QP, with 
timing much faster than CPLEX and faster than or comparable to SVM1ig ht • 

#01 Training Testing Time 
Points Iterations Correctness Correctness (CPU min) 

4 million 5 86.09% 86.06% 38.04 
7 million 5 86.10% 86.28% 95.57 

Table 2: Performance of ASVM on NDC generated datasets in R 32 . (1/ = 0.01) 

the default termination error criterion in SVM1ight of 0.001, which is actually a less 
stringent criterion than the one we used for ASVM. This is because the criterion we 
used for ASVM (see above) is an aggregate over the errors for all points, whereas 
the SVM1ight criterion reflects a minimum error threshold for each point. 

The second set of experiments show that ASVM performs well on massive datasets. 
We created synthetic data of Gaussian distribution by using our own NDC Data 
Generator [20] as suggested by Usama Fayyad. The results of our experiments are 
shown in Table 2. We did try to run SVM1ight on these datasets as well, but we 
ran into memory difficulties. Note that for these experiments, all the data was 
brought into memory. As such , the running time reported consists of the time 
used to actually solve the problem to termination excluding I/O time. This is 
consistent with the measurement techniques used by other popular approaches [11 , 
21]. Putting all t he data in memory is simpler to code and results in faster running 
times. However, it is not a fundamental requirement of our algorithm - block 
matrix multiplications, incremental evaluations of Q-1 using another application of 
the SMW formula, and indices on the dataset can be used to create an efficient disk 
based version of ASVM. 

5 Conclusion 

A very fast, finite and simple algorithm, ASVM, capable of classifying massive 
datasets has been proposed and implemented. ASVM requires nothing more com­
plex than a commonly available linear equation solver for solving small systems 
with few variables even for massive datasets. Future work includes extensions to 
parallel processing of the data, handling very large datasets directly from disk as 
well as extending our approach to nonlinear kernels. 
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