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Abstract 

How should we decide among competing explanations of a 
cognitive process given limited observations? The problem of 
model selection is at the heart of progress in cognitive science. In 
this paper, Minimum Description Length (MDL) is introduced as a 
method for selecting among computational models of cognition. 
We also show that differential geometry provides an intuitive 
understanding of what drives model selection in MDL. Finally, 
adequacy of MDL is demonstrated in two areas of cognitive 
modeling. 

1 Model Selection and Model Complexity 

The development and testing of computational models of cognitive processing are a 
central focus in cognitive science. A model embodies a solution to a problem whose 
adequacy is evaluated by its ability to mimic behavior by capturing the regularities 
underlying observed data. This enterprise of model selection is challenging because 
of the competing goals that must be satisfied. Traditionally, computational models 
of cognition have been compared using one of many goodness-of-fit measures. 
However, use of such a measure can result in the choice of a model that over-fits the 
data, one that captures idiosyncracies in the particular data set (i.e., noise) over and 
above the underlying regularities of interest. Such models are considered complex, 
in that the inherent flexibility in the model enables it to fit diverse patterns of data. 
As a group, they can be characterized as having many parameters that are combined 
in a highly nonlinear fashion in the model equation. They do not assume a single 
structure in the data . Rather, the model contains multiple structures; each obtained 
by finely tuning the parameter values of the model, and thus can fit a wide range of 
data patterns. In contrast, simple models, frequently with few parameters, assume a 
specific structure in the data, which will manifest itself as a narrow range of similar 
data patterns. Only when one of these patterns occurs will the model fit the data 
well. 

The problem of over-fitting data due to model complexity suggests that the goal of 
model selection should instead be to select the model that generalizes best to all data 
samples that arise from the same underlying regularity, thus capturing only the 
regularity, not the noise. To achieve this goal, the selection method must be 
sensitive to the complexity of a model. There are at least two independent 
dimensions of model complexity. They are the number of free parameters of a 



model and its functional form, which refers to the way the parameters are combined 
in the model equation. For instance, it seems unlikely that two one-parameter 
models, y = ex and y = x9, are equally complex in their ability to fit data. The two 
dimensions of model complexity (number of parameters and functional form) and 
their interplay can improve a model's fit to the data, without necessarily improving 
generalizability. 

The trademark of a good model selection procedure, then, is its ability to satisfy two 
opposing goals. A model must be sufficiently complex to describe the data sample 
accurately, but without over-fitting the data and thus losing generalizability. To 
achieve this end, we need a theoretically well-justified measure of model complexity 
that takes into account the number of parameters and the functional form of a model. 
In this paper, we introduce Minimum Description Length (MDL) as an appropriate 
method of selecting among mathematical models of cognition. We also show that 
MDL has an elegant geometric interpretation that provides a clear, intuitive 
understanding of the meaning of complexity in MDL. Finally, application examples 
of MDL are presented in two areas of cognitive modeling. 

1.1 Minimum Description Length 

The central thesis of model selection is the estimation of a model's generalizability. 
One approach to assessing generalizability is the Minimum Description Length 
(MDL) principle [1]. It provides a theoretically well-grounded measure of 
complexity that is sensitive to both dimensions of complexity and also lends itself to 
intuitive, geometric interpretations. MDL was developed within algorithmic coding 
theory to choose the model that permits the greatest compression of data. A model 
family f with parameters e assigns the likelihood f(yle) to a given set of observed 
data y . The full form of the MDL measure for such a model family is given below. 

MDL = -In! (yISA) + ~ln( ; ) + In f dS.jdetl(S) 

where SA is the parameter that maximizes the likelihood, k is the number of 
parameters in the model, N is the sample size and I(e) is the Fisher information 
matrix. MDL is the length in bits of the shortest possible code that describes the 
data with the help of a model. In the context of cognitive modeling, the model that 
minimizes MDL uncovers the greatest amount of regularity (i.e., knowledge) 
underlying the data and therefore should be selected. The first, maximized log 
likelihood term is the lack-of-fit measure, and the second and third terms constitute 
the intrinsic complexity of the model. In particular, the third term captures the 
effects of complexity due to functional form, reflected through I(e). We will call the 
latter two terms together the geometric complexity of the model, for reasons that 
will become clear in the remainder of this paper. 

MDL arises as a finite series of terms in an asymptotic expansion of the Bayesian 
posterior probability of a model given the data for a special form of the parameter 
prior density [2] . Hence in essence, minimization of MDL is equivalent to 
maximization of the Bayesian posterior probability. In this paper we present a 
geometric interpretation of MDL, as well as Bayesian model selection [3], that 
provides an elegant and intuitive framework for understanding model complexity, a 
central concept in model selection. 

2 Differential Geometric Interpretation of MDL 

From a geometric perspective, a parametric model family of probability 
distributions forms a Riemannian manifold embedded in the space of all probability 



distributions [4]. Every distribution is a point in this space, and the collection of 
points created by varying the parameters of the model gives rise to a hyper-surface 
in which "similar" distributions are mapped to "nearby" points. The infinitesimal 
distance between points separated by the infinitesimal parameter differences de; is 

given by ds 2 = Y' k. g .. (8 )d8 ; d8 j where g ij(e) is the Riemannian metric tensor. The 
I.... l,j = l lJ 

Fisher information, lij(e), is the natural metric on a manifold of distributions in the 
context of statistical inference [4]. We argue that the MDL measure of model fitness 
has an attractive interpretation in such a geometric context. 

The first term in MDL estimates the accuracy of the model since the likelihood 
f(yI8A

) measures the ability of the model to fit the observed data. The second and 
third terms are supposed to penalize model complexity; we will show that they have 
interesting geometric interpretations. Given the metric gij = lij on the space of 
parameters, the infinitesimal volume element on the parameter manifold is 

dV = d8 .Jdetl (8) == rt=l d8 i .Jdetl (8) . The Riemannian volume of the parameter 

manifold is obtained by integrating dV over the space of parameters: 

VM = f dV = f dS..jdetl(S) 

In other words, the third term in MDL penalizes models that occupy a large volume 
in the space of distributions. 

In fact, the volume measure VM is related to the number of "distinguishable" 
probability distributions indexed by the model M.l Because of the way the model 
family is embedded in the space of distributions, two different parameter values can 
index very similar distributions. If complexity is related to volumes occupied by 
model manifolds, the measure of volume should count only different, or 
distinguishable, distributions, and not the artificial coordinate volume. It is shown in 
[2,5] that the volume VM achieves this goal? 

While the third term in MDL measures the total volume of distributions a model can 
describe, the second term relates to the number of model distributions that lie close 
to the truth. To see this, taking a Bayesian perspective on model selection is helpful. 
U sing Bayes rule, the probability that the truth lies in the family f given the 
observed data y can be written as: 

Pr(fly) = A(f,y){ dB w(S)Pr(yI9) 

Here wee) is the prior probability of the parameter e, and A(f, y) = Pr(f)/Pr(y) is the 
ratio of the prior probabilities of the family f and data y. Bayesian methods assume 
that the latter are the same for all models under consideration and analyze the so­
called Bayesian posterior 

Pf = I de w(9)Pr(yI9)' 

Lacking prior knowledge, w should be chosen to weight all distinguishable 
distributions in the family equally. Hence, wee) = lIVM . For large sample sizes, the 
likelihood function f(yI8A

) localizes under general conditions to a multivariate 

1 Roughly speaking, two probability distributions are considered indistinguishable if one 
is mistaken for the other even in the presence of an infinite amount of data. A careful 
definition of distinguishability involves use of the Kullback-Leibler distance between 
two probability distributions. For further details, see [3,4]. 

2 Note that the parameters of the model are always assumed to be cut off in a manner to 
ensure that VM is finite. 



Gaussian centered at the maximum likelihood parameter e' (see [3,4] and citations 
therein). In this limit, the integral for Pj can be explicitly carried out. Performing the 
integral and taking a log given the result 

- In Pf = -lnf(yIS') + In(V M / CM )+ 0(1/ N) where C M = (21t / N)k /2 h(S') 

where h(e') is a data-dependent factor that goes to 1 for large N when the truth lies 
withinf (see [3,4] for details). CM is essentially the volume of an ellipsoidal region 
around the Gaussian peak at f(yle') where the integrand of the Bayesian posterior 
makes a substantial contribution. In effect, CM measures the number of 
distinguishable distributions within f that lie close to the truth. 

Using the expressions for CM and VM , the MDL selection criterion can be written as 

MDL = - In f (yle') + In(V M / C M) + terms sub leading in N 

(The subleading terms include the contribution of h(e'); see [3,4] regarding its role 
in Bayesian inference.) The geometric meaning of the complexity penalty in MDL 
now becomes clear; models which occupy a relatively large volume distant from the 
truth are penalized. Models that contain a relatively large fraction of distributions 
lying close to the truth are preferred. Therefore, we refer to the last two terms in 
MDL as geometric complexity. It is also illuminating to collect terms in MD as 

MDL = -In[ ( f (yle') ): = -In('' normalized maximized likelihood") 
VM /CM 

Written this way, MDL selects the model that gives the highest value of the 
maximum likelihood, per the relative ratio of distinguishable distributions (VMICM). 
From this perspective, a better model is simply one with many distinguishable 
distributions close to the truth, but few distinguishable distributions overall. 

3 Application Examples 

Geometric complexity and MDL constitute a powerful pair of model evaluation 
tools. When used together in model testing, a deeper understanding of the 
relationship between models can be gained. The first measure enables one to assess 
the relative complexities of the set of models under consideration. The second 
builds on the first by suggesting which model is preferable given the data in hand. 
The following simulations demonstrate the application of these methods in two 
areas of cognitive modeling: information integration, and categorization. In each 
example, two competing models were fitted to artificial data sets generated by each 
model. Of interest is the ability of a selection method to recover the model that 
generated the data. MDL is compared with two other selection methods, both of 
which consider the number of parameters only. They are the Akaike Information 
Criterion (AIC; [6]) and the Bayesian Information Criterion (BIC; [7]) defined as: 
AlC= -2 In !CyIS')+ 2k; HIC= -21n!CyIS')+ klnN. 

3.1 Information Integration 

In a typical information integration experiment, a range of stimuli are generated 
from a factorial manipulation of two or more stimulus dimensions (e.g." visual and 
auditory) and then presented to participants for categorization as one of two or more 
possible response alternatives. Data are scored as the proportion of responses in one 



category across the various combinations of stimulus dimensions. For this 
comparison, we consider two models of information integration, the Fuzzy Logical 
Model of Perception (FLMP; [8]) and the Linear Integration Model (LIM; [9]). Each 
assumes that the response probability (Pij) of one category, say A, upon the 
presentation of a stimulus of the specific i and j feature dimensions in a two-factor 
information integration experiment takes the following form: 

8)"j 8j + Aj 
FLMP: Pjj = 8jAj + (1- 8)(1- Aj ); LIM: Pjj = -2-

where ei and ej (i=I, .. ,q] ; j=I, .. ,q2· 0 < ei, ej < I) are parameters representing the 
corresponding feature dimensions. The simulation results are shown in Table 1. 

When the data were generated by FLMP, regardless of the selection method used, 
FLMP was recovered 100% of the time. This was true across all selection methods 
and across both sample sizes, except for MDL when sample size was 20. In this 
case, MDL did not perform quite as well as the other selection methods. When the 
data were generated by LIM, AIC or BIC fared much more poorly whereas MDL 
recovered the correct model (LIM) across both sample sizes. Specifically, under 
AIC or BIC, FLMP was selected over LIM half of the time for N = 20 (51 % vs. 
49%), though such errors were reduced for N = 150 (17 % vs 83%). 

T bl 1 M d I R a e o e ecovery R ates or wo n ormatIOn ntegratIOn f T I f I M d I o e s 

Sample Selection Data from: FLMP LIM 
Size Method Model fitted: 

AIC/BIC FLMP 100% 51 % 

N = 20 LIM 0% 49% 

MDL FLMP 89% 0% 

LIM 11 % 100% 

AIC/BIC FLMP 100% 17% 

N = 150 LIM 0% 83 % 

MDL FLMP 100% 0% 

LIM 0% 100% 

That FLMP is selected over LIM when a method such as AIC was used, even when 
the data were generated by LIM, suggests that FLMP is more complex than LIM. 
This observation was confirmed when the geometric complexity of each model was 
calculated. The difference in geometric complexity between FLMP and LIM was 
8.74, meaning that for every distinguishable distribution for which LIM can 
account, FLMP can describe about e8.74 == 6248 distinguishable distributions. 
Obviously, this difference in complexity between the two models must be due to the 
functional form because they have the same number of parameters. 

3.2 Categorization 

Two models of categorization were considered in the present demonstration. They 
were the generalized context model (GCM: [10]) and the prototype model (PRT: 
[11]). Each model assumes that categorization responses follow a multinomial 
probability distribution with Pii (probability of category C] response given stimulus 
Xi), which is given by 



~ S .· S i.... j ee} IJ if 

GCM: Pu = ~ ~ ; PRT: Pu = ~ 
I... K I... keCK Sik I... K SiK 

In the equation, sij is a similarity measure between multidimensional stimuli Xi and 
Xj , SiJ is a similarity measure between stimulus Xi and the prototypic stimulus Xj of 
category Cj • Similarity is measured using the Minkowski distance metric with the 
metric parameter r. The two models were fitted to data sets generated by each model 
using the six-dimensional scaling solution from Experiment 1 of [12] under the 
Euclidean distance metric of r = 2. 

As shown in Table 2, under AIC or SIC, a relatively small bias toward choosing 
GCM was found using data generated from PRT when N = 20. When MDL was 
used to choose between the two models, there was improvement over AIC in 
correcting the bias. In the larger sample size condition, there was no difference in 
model recovery rate between AIC and MDL. This outcome contrasts with that of the 
preceding example, in which MDL was generally superior to the other selection 
methods when sample size was smallest. 

T bl 2 M d I R a e o e ecovery R fTC ates or wo ategoflzatlOn M d I o e s 

Sample Selection Data from: GCM PRT 
Size Method Model fitted: 

AIC/SIC GCM 98% 15% 

N = 20 PRT 2% 85 % 

MDL GCM 96% 7% 

PRT 4% 93 % 

AIC/SIC GCM 99% 1% 

N = 150 PRT 1% 99% 

MDL GCM 99% 1% 

PRT 1% 99% 

On the face of it, these findings would suggest that MDL is not much better than the 
other selection methods. After all, what else could cause this result? The only 
circumstances in which such an outcome is predicted under MDL is when the 
functional forms of the two models are similar (recall that the models have the same 
number of parameters), thus minimi zing the differential contribution of functional 
form in the complexity term. Calculation of the geometric complexity of each model 
confirmed this suspicion. GCM is indeed only slightly more complex than PRT, the 
difference being equal to 0.60, so GCM can describe about two distributions (eO.60 == 
1.8) for every distribution PRT can describe. 

These simulation results together demonstrate usefulness of MDL and the geometric 
complexity measure in testing models of cognition. MDL's sensitivity to functional 
form was clearly demonstrated in its superior model recovery rate, especially when 
the complexities of the models differed by a nontrivial amount. 

4 Conclusion 

Model selection in cognitive science can proceed far more confidently with a clear 
understanding of why one model should be preferred over another. A geometric 



interpretation of MDL helps to achieve this goal. The work carried out thus far 
indicates that MDL, along with the geometric complexity measure, holds 
considerable promise in evaluating computational models of cognition. MDL 
chooses the correct model most of the time, and geometric complexity provides a 
measure of how different the two models are in their capacity or power. Future work 
is directed toward extending this approach to other classes of models, such as 
connectionist networks. 
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