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Abstract 

We present the embedded trees algorithm, an iterative technique 
for estimation of Gaussian processes defined on arbitrary graphs. 
By exactly solving a series of modified problems on embedded span­
ning trees, it computes the conditional means with an efficiency 
comparable to or better than other techniques. Unlike other meth­
ods, the embedded trees algorithm also computes exact error co­
variances. The error covariance computation is most efficient for 
graphs in which removing a small number of edges reveals an em­
bedded tree. In this context, we demonstrate that sparse loopy 
graphs can provide a significant increase in modeling power rela­
tive to trees, with only a minor increase in estimation complexity. 

1 Introduction 

Graphical models are an invaluable tool for defining and manipulating probability 
distributions. In modeling stochastic processes with graphical models, two basic 
problems arise: (i) specifying a class of graphs with which to model or approximate 
the process; and (ii) determining efficient techniques for statistical inference. In fact, 
there exists a fundamental tradeoff between the expressive power of a graph, and 
the tractability of statistical inference. At one extreme are tree-structured graphs: 
although they lead to highly efficient algorithms for estimation [1, 2], their modeling 
power is often limited. The addition of edges to the graph tends to increase modeling 
power, but also introduces loops that necessitate the use of more sophisticated and 
costly techniques for estimation. 

In areas like coding theory, artificial intelligence, and speech processing [3, 1], graph­
ical models typically involve discrete-valued random variables. However, in domains 
such as image processing, control, and oceanography [2, 4, 5], it is often more appro­
priate to consider random variables with a continuous distribution. In this context, 
Gaussian processes on graphs are of great practical significance. Moreover, the 
Gaussian case provides a valuable setting for developing an understanding of esti­
mation algorithms [6, 7]. 



The focus of this paper is the estimation and modeling of Gaussian processes de­
fined on graphs with cycles. We first develop an estimation algorithm that is based 
on exploiting trees embedded within the loopy graph. Given a set of noisy measure­
ments, this embedded trees (ET) algorithm computes the conditional means with 
an efficiency comparable to or better than other techniques. Unlike other methods, 
the ET algorithm also computes exact error covariances at each node. In many 
applications, these error statistics are as important as the conditional means. We 
then demonstrate by example that relative to tree models, graphs with a small 
number of loops can lead to substantial improvements in modeling fidelity without 
a significant increase in estimation complexity. 

2 Linear estimation fundamentals 

2.1 Problem formulation 

Consider a Gaussian stochastic process x <'oJ N(O, P) that is Markov with respect 
to an undirected graph g. Each node in 9 corresponds to a subvector Xi of x. 
We will refer to Xi as the state variable for the ith node, and its length as the 
state dimension. By the Hammersley- Clifford Theorem [8], p- 1 inherits a sparse 
structure from g. If it is partitioned into blocks according to the state dimensions, 
the (i, j)fh block can be nonzero only if there is an edge between nodes i and j. 

Let y = ex + v, v <'oJ N(O, R), be a set of noisy observations. Without loss of 
generality, we assume that the subvectors Yi of the observations are conditionally 
independent given the state x. For estimation purposes, we are interested in p( Xi Iy), 
the marginal distribution of the state at each node conditioned on the noisy obser­
vations. Standard formulas exist for the computation of p(xIY) <'oJ N(x, P): 

x = peT R-1y P = [p-1 + eT R-1e] -1 (1) 

The conditional error covariances Pi are the block diagonal elements of the full error 
covariance P, where the block sizes are equal to the state dimensions. 

2.2 Exploiting graph structure 

When 9 is tree structured, both the conditional means and error covariances can 
be computed by a direct and very efficient O(cF N) algorithm [2]. Here d is the 
maximal state dimension at any node, and N is the total number of nodes. This 
algorithm is a generalization of classic Kalman smoothing algorithms for time series, 
and involves passing means and covariances to and from a node chosen as the root. 

For graphs with cycles, calculating the full error covariance P by brute force matrix 
inversion would, in principle, provide the conditional means and error variances. 
Since the computational complexity of matrix inversion is O([dNP), this proposal 
is not practically feasible in many applications, such as image processing, where N 
may be on the order of 105 . This motivates the development of iterative techniques 
for linear estimation on graphs with cycles. 

Recently, two groups [6, 7] have analyzed Pearl's belief propagation [1] in appli­
cation to Gaussian processes defined on loopy graphs. For Gaussians on trees, 
belief propagation produces results equivalent to the Kalman smoother of Chou et 
al. [2]. For graphs with cycles, these groups showed that when belief propagation 
converges, it computes the correct conditional means, but that error covariances 
are incorrect. The complexity per iteration of belief propagation on loopy graphs 
is O(d3 N), where one iteration corresponds to updating each message once. 
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Figure 1. Embedded trees produced by two different cutting matrices Ki for a 
nearest- neighbor grid (observation nodes not shown). 

It is important to note that conditional means can be efficiently calculated using 
techniques from numerical linear algebra [9]. In particular, it can be seen from 
equation (1) that computing the conditional mean iC is equivalent to computing 
the product of a matrix inverse and a vector. Given the sparsity of p-l, iterative 
techniques like conjugate gradient [9] can be used to compute the mean with asso­
ciated cost O(dN) per iteration. However, like belief propagation, such techniques 
compute only the means and not the error covariances. 

3 Embedded trees algorithm 

3.1 Calculation of means 

In this section, we present an iterative algorithm for computing both the conditional 
means and error covariances of a Gaussian process defined on any graph. Central 
to the algorithm is the operation of cutting edges from a loopy graph to reveal 
an embedded tree. Standard tree algorithms [2] can be used to exactly solve the 
modified problem, and the results are used in a subsequent iteration. 

For a Gaussian process on a graph, the operation of removing edges corresponds to 
modifying the inverse covariance matrix. Specifically, we apply a matrix splitting 

p-l + CT R-1C = p-l _ K + CT R-1C 
tree(t) t 

where K t is a symmetric cutting matrix chosen to ensure that Pt~;e(t) corresponds 
to a valid tree-structured inverse covariance matrix. This matrix splitting allows us 
to consider defining a sequence of iterates {xn} by the recursion: 

[p-l + CTR-1C] ~n - K ~n-l + CTR-1 
tree(t(n)) X - t(n)x Y 

Here t(n) indexes the embedded tree used in the nth iteration. For example, Figure 1 
shows two of the many spanning trees embedded in a nearest-neighbor grid. When 
the matrix (Pt~;e(t(n)) + CT R-1C) is positive definite, it is possible to solve for 
the next iterate xn in terms of data y and the previous iterate. Thus, given some 
starting point XO, we can generate a sequence of iterates {iCn } by the recursion 

~ M-1 [K ~-l CTR-1 ] (2) x = t(n) t(n)X + y 

where Mt(n) ~ (Pt~;e(t(n)) + CT R-1C). By comparing equation (2) to equation (1), 

it can be seen that computing the nth iterate corresponds to a linear-Gaussian prob­
lem, which can be solved efficiently and directly with standard tree algorithms [2]. 

3.2 Convergence of means 

Before stating some convergence results, recall that for any matrix A, the spectral 
radius is defined as p(A) ~ max>. 1>'1, where>. ranges over the eigenvalues of A. 



Proposition 1. Let x be the conditional mean ofthe original problem on the loopy 
graph, and consider the sequence of iterates {xn} generated by equation (2). Then 
for any starting point, x is the unique fixed point of the recursion, and the error 
en ::@, xn - x obeys the dynamics 

en = [IT Mt~:e(t(j))Kt(j)l eO (3) 
J=1 

In a typical implementation of the algorithm, one cycles through the embedded 
trees in some fixed order, say t = 1, .. . , T. In this case, the convergence of the 
algorithm can be analyzed in terms of the product matrix A ::@, nJ=1 Mt~:e(j) Kj. 

Proposition 2. Convergence of the ET algorithm is governed by the spectral ra­
dius of A. In particular, if p(A) > 1, then the algorithm will not converge, whereas 
if p(A) < 1, then (xn - x) n~ 0 geometrically at rate 'Y ::@, p(A) 10. 

Note that the cutting matrices K must be chosen in order to guarantee not only that 
~-;;e is tree-structured but also that M ::@, (Pt-;;e + CT R-1C) is positive definite. 
The following theorem, adapted from results in [10], gives conditions guaranteeing 
the validity and convergence of the ET algorithm when cutting to a single tree. 

Theorem 1. Define Q ::@, p-1 + CT R-1C, and M ::@, Q + K. Suppose the cutting 
matrix K is symmetric and positive semidefinite. Then we are guaranteed that 
p(M- 1 K) < 1. In particular, we have the bounds: 

Am ax (K) :::; p(M-1 K) :::; Amax (K) (4) 
Amax(K) + Amax(Q) Amax(K) + Amin(Q) 

It should be noted that the conditions of this theorem are sufficient, but by no 
means necessary, to guarantee convergence of the ET algorithm. In particular, we 
find that indefinite cutting matrices often lead to faster convergence. Furthermore, 
Theorem 1 does not address the superior performance typically achieved by cycling 
through several embedded trees. Gaining a deeper theoretical understanding of 
these phenomena is an interesting open question. 

3.3 Calculation of error covariances 

Although there exist a variety of iterative algorithms for computing the conditional 
mean of a linear-Gaussian problem, none of these methods correctly compute error 
covariances at each node. We show here that the ET algorithm can efficiently 
compute these covariances in an iterative fashion. For many applications (e.g., 
oceanography [5]), these error statistics are as important as the estimates. 

We assume for simplicity in notation that XO = 0 and then expand equation (2) 
to yield that for any iteration xn = [Fn + Mt(~)]CT R-1 y, where the matrix F n 

satisfies the recursion 

F n M-1 K [Fn- 1 M- 1 ] = t(n) t(n) + t(n-1) (5) 

with the initial condition F1 = o. It is straightforward to show that whenever 
the recursion for the conditional means in equation (2) converges, then the matrix 
sequence {Fn + Mt(~)} converges to the full error covariance P. 

Moreover, the cutting matrices K are typically of low rank, say O(E) where E 
is the number of cut edges. On this basis, it can be shown that each Fn can be 
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Figure 2. (a) Convergence rates for computing conditional means (normalized 
£2 error). (b) Convergence rate of ET algorithm for computing error variances. 

decomposed as a sum of O(E) rank 1 matrices. Directly updating this low-rank 
decomposition of F n from that of F n - 1 requires O(d3 E2 N) operations. However, 
an efficient restructuring of this update requires only O(d3 EN) operations [11]. The 
diagonal blocks of the low- rank representation may be easily extracted and added to 
the diagonal blocks of Mi(~), which are computed by standard tree smoothers. All 
together, we may obtain these error variances in O(d3 EN) operations per iteration. 
Thus, the computation of error variances will be particularly efficient for graphs 
where the number of edges E that must be cut is small compared to the total 
number of nodes N. 

3.4 Results 

We have applied the algorithm to a variety of graphs, ranging from graphs with 
single loops to densely connected MRFs on grids. Figure 2(a) compares the rates of 
convergence for three algorithms: conjugate gradient (CG), embedded trees (ET), 
and belief propagation (BP) on a 20 x 20 nearest-neighbor grid. The ET algorithm 
employed two embedded trees analogous to those shown in Figure 1. We find that 
CG is usually fastest, and can exhibit supergeometric convergence. In accordance 
with Proposition 2, the ET algorithm converges geometrically. Either BP or ET can 
be made to converge faster, depending on the choice of clique potentials. However, 
we have not experimented with optimizing the performance of ET by adaptively 
choosing edges to cut. Figure 2(b) shows that in contrast to CG and BP, the ET 
algorithm can also be used to compute the conditional error variances, where the 
convergence rate is again geometric. 

4 Modeling using graphs with cycles 

4.1 Issues in Illodel design 

A variety of graphical structures may be used to approximate a given stochastic 
process. For example, perhaps the simplest model for a I-D time series is a Markov 
chain, as shown in Figure 3(a). However, a high order model may be required 
to adequately capture long-range correlations. The associated increase in state 
dimension leads to inefficient estimation. 

Figure 3(b) shows an alternative model structure. Here, additional "coarse scale" 
nodes have been added to the graph which are not directly linked to any mea­
surements. These nodes are auxiliary variables created to explain the "fine scale" 
stochastic process of interest. If properly designed, the resulting tree structure 
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Figure 3. (a) Markov chain. (b) Multiscale tree model. (c) Tree augmented by 
extra edge. (d) Desired covariance P. (e) Error IP - ptr •• 1 between desired covari­
ance and realized tree covariance. (f) Error IP - Hoopl between desired covariance 
and covariance realized with loopy graph. 

will capture long-range correlations without the increase in state dimension of a 
higher-order Markov model. In previous work, our group has developed efficient 
algorithms for estimation and stochastic realization using such multiscale tree mod­
els [2, 4, 5, 12]. The gains provided by multiscale models are especially impressive 
when quadtrees are used to approximate two-dimensional Markov random fields. 
While statistical inference on MRFs is notoriously difficult, estimation on quadtrees 
remains extremely efficient. 

The most significant weakness of tree models is boundary artifacts. That is, leaf 
nodes that are adjacent in the original process may be widely separated in the 
tree structure (see Figure 3(b)). As a result, dependencies between these nodes 
may be inadequately modeled, causing blocky discontinuities. Increasing the state 
dimension d of the hidden nodes will reduce blockiness, but will also reduce esti­
mation efficiency, which is O(d3 N) in total. One potential solution is to add edges 
between pairs of fine scale nodes where tree artifacts are likely to arise, as shown 
in Figure 3(c). Such edges should be able to account for short-range dependency 
neglected by a tree model. Furthermore, optimal inference for such "near- tree" 
models using the ET algorithm will still be extremely efficient. 

4.2 Application to Illultiscale Illodeling 

Consider a one-dimensional process of length 32 with exact covariance P shown in 
Figure 3(d) . We approximate this process using two different graphical models, a 
multiscale tree and a "near-tree" containing an additional edge between two fine­
scale nodes across a tree boundary (see Figure 3(c)). In both models, the state 
dimension at each node is constrained to be 2; therefore, the finest scale contains 16 
nodes to model all 32 process points. Figure 3( e) shows the absolute error I P - Ptree I 
for the tree model, where realization was performed by the scale-recursive algorithm 
presented in [12]. The tree model matches the desired process statistics relatively 
well except at the center, where the tree structure causes a boundary artifact. 
Figure 3(f) shows the absolute error IP -l1oop l for a graph obtained by adding a 
single edge across the largest fine-scale tree boundary. The addition reduces the 



peak error by 60%, a substantial gain in modeling fidelity. If the ET algorithm 
is implemented by cutting to two different embedded trees, it converges extremely 
rapidly with rate 'Y = 0.11. 

5 Discussion 

This paper makes contributions to both the estimation and modeling of Gaussian 
processes on graphs. First, we developed the embedded trees algorithm for estima­
tion of Gaussian processes on arbitrary graphs. In contrast to other techniques, our 
algorithm computes both means and error covariances. Even on densely connected 
graphs, our algorithm is comparable to or better than other techniques for comput­
ing means. The error covariance computation is especially efficient for graphs in 
which cutting a small number of edges reveals an embedded tree. In this context, 
we have shown that modeling with sparsely connected loopy graphs can lead to sub­
stantial gains in modeling fidelity, with a minor increase in estimation complexity. 

From the results of this paper arise a number of fundamental questions about the 
trade-off between modeling fidelity and estimation complexity. In order to address 
these questions, we are currently working to develop tighter bounds on the conver­
gence rate of the algorithm, and also considering techniques for optimally selecting 
edges to be removed. On the modeling side, we are expanding on previous work 
for trees [12] in order to develop a theory of stochastic realization for processes on 
graphs with cycles. Lastly, although the current paper has focused on Gaussian 
processes, similar concepts can be developed for discrete-valued processes. 
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