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Experimental data show that biological synapses behave quite differently 
from the symbolic synapses in common artificial neural network models. 
Biological synapses are dynamic, i.e., their "weight" changes on a short 
time scale by several hundred percent in dependence of the past input 
to the synapse. In this article we explore the consequences that these 
synaptic dynamics entail for the computational power of feedforward 
neural networks. We show that gradient descent suffices to approximate 
a given (quadratic) filter by a rather small neural system with dynamic 
synapses. We also compare our network model to artificial neural net­
works designed for time series processing. Our numerical results are 
complemented by theoretical analysis which show that even with just a 
single hidden layer such networks can approximate a surprisingly large 
large class of nonlinear filters: all filters that can be characterized by 
Volterra series. This result is robust with regard to various changes in the 
model for synaptic dynamics. 

1 Introduction 

More than two decades of research on artificial neural networks has emphasized the central 
role of synapses in neural computation. In a conventional artificial neural network, all units 
("neurons") are assumed to be identical, so that the computation is completely specified by 
the synaptic "weights," i. e. by the strengths of the connections between the units. Synapses 
in common artificial neural network models are static: the value Wij of a synaptic weight 
is assumed to change only during "learning". In contrast to that, the "weight" Wij (t) of 
a biological synapse at time t is known to be strongly dependent on the inputs Xj(t - T) 
that this synapse has received from the presynaptic neuron i at previous time steps t - T, 

see e.g. [1]. We will focus in this article on mean-field models for populations of neurons 
connected by dynamic synapses. 
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Figure 1: A dynamic synapse can produce quite different outputs for the same input. The 
response of a single synapse to a step increase in input activity applied at time step 0 is 
compared for three different parameter settings. 

Several models for single synapses have been proposed for the dynamic changes in synaptic 
efficacy. In [2] the model of [3] is extended to populations of neurons where the current 
synaptic efficacy Wij (t) between a population j and a population i at time t is modeled as a 
product of a facilitation term lij (t) and a depression term dij (t) scaled by the factor Wij . 
We consider a time discrete version of this model defined as follows: 

Wij ( t) = Wij . hj ( t) . dij ( t) (1) 

(2) 
- - lij(t) -
lij(t + 1) = hj(t) - ~ + Uij . (1- hj(t)) . Xj(t) 

'J 

dij(t + 1) = dij(t) + 1-~~j(t) - lij(t). dij(t)· Xj(t) 
'J 

(3) 

(4) hj(t) = hj(t) . (1- Uij) + Uij 

with dij (0) = 1 and hj (0) = O. Equation (2) models facilitation (with time constant Fij ), 
whereas equation (3) models the combined effects of synaptic depression (with time con­
stant D ij) and facilitation. Depending on the values of the characteristic parameters Uij, 
Dij , Fij a synaptic connection (ij) maps an input function Xj(t) into the corresponding 
time varying synaptic output Wij (t) . Xj (t). The same input Xj (t) can yield markedly dif­
ferent outputs Wij (t) . Xi (t) for different values of the characteristic parameters Uij, Dij, 
Fij. Fig. 1 compares the output for three different sets of values for the parameters Uij, 
Dij , Fij . These examples illustrate just three of the range of input-output behaviors that a 
single synapse can achieve. 

In this article we will consider feedforward networks coupled by dynamic synapses. One 
should think of the computational units in such a network as populations of spiking neurons. 
We refer to such networks as "dynamic networks", see Fig. 2 for details. 
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dynamic synapses 

Figure 2: The dynamic network model. 
The output Xi(t) of the itk unit is given 
by Xi(t) = u(Ej Wij(t) . Xj(t)), where 
u is either the sigmoid function u(u) = 
1/(1 + exp(-u)) (in the hidden layers) 
or just the identity function u( u) = u (in 
the output layer) and Wij (t) is modeled ac­
cording to Equ. (1) to (4). 



In Sections 2 and 3 we demonstrate (by employing gradient descent to find appropriate 
values for the parameters Uij, D ij , Fij and Wij) that even small dynamic networks can 
compute complex quadratic filters. In Section 4 we address the question which synaptic 
parameters are important for a dynamic network to learn a given filter. In Section 5 we 
give a precise mathematical characterization of the computational power of such dynamic 
networks. 

2 Learning Arbitrary Quadratic Filters by Dynamic Networks 

In order to analyze which filters can be approximated by small dynamic networks we in­
vestigate the task of learning a quadratic filter Q randomly chosen from a class Qm. The 
class Qm consists of all quadratic filters Q whose output (Qx) (t) in response to the in­
put time series x(t) is defined by some symmetric m x m matrix HQ = [hkd of fil­
ter coefficients hkl E ~ k = 1 .. . m, l = l ... m through the equation (Qx)(t) = 
Z=;:1 Z=~=1 hkl x(t - k) x(t - l) . An example of the input and output for one choice 
of quadratic parameters (m = 10) are shown in Figs. 3B and 3C, respectively. We view 
such filter Q as an example for the kinds of complex transformations that are important 
to an organism's survival, such as those required for motor control and the processing of 
time-varying sensory inputs. For example, the spectrotemporal receptive field of a neu­
ron in the auditory cortex [4] reflects some complex transformation of sound pressure to 
neuronal activity. The real transformations actually required may be very complex, but the 
simple filter Q provides a useful starting point for assessing the capacity of this architecture 
to transform one time-varying signal into another. 

Can a network of units coupled by dynamic synapses implement the filter Q? We tested 
the approximation capabilities of a rather small dynamic network with just 10 hidden 
units (5 excitatory and 5 inhibitory ones), and one output (Fig. 3A). The dynamics of 
inhibitory synapses is described by the same model as that for excitatory synapses. For 
any particular temporal pattern applied at the input and any particular choice of the synap­
tic parameters, this network generates a temporal pattern as output. This output can be 
thought of, for example, as the activity of a particular population of neurons in the cor­
tex, and the target function as the time series generated for the same input by some un­
known quadratic filter Q. The synaptic parameters Wij, D ij , Fij and Uij are chosen 
so that, for each input in the training set, the network minimized the mean-square error 
E[z, zQ] = ~ z=;=-oI(Z(t) - ZQ(t))2 between its output z(t) and the desired output zQ(t) 
specified by the filter Q. To achieve this minimization, we used a conjugate gradient al­
gorithm. l The training inputs were random signals, an example of which is shown in 
Fig. 3B. The test inputs were drawn from the same random distribution as the training in­
puts, but were not actually used during training. This test of generalization ensured that the 
observed performance represented more than simple "memorization" of the training set. 
Fig. 3C compares the network performance before and after training. Prior to training, the 
output is nearly flat, while after training the network output tracks the filter output closely 
(E[z,zQ] = 0.0032). 

Fig. 3D shows the performance after training for different randomly chosen quadratic filters 
Q E Qm for m = 4, ... ,16. Even for larger values of m the relatively small network with 
10 hidden units performs rather well. Note that a quadratic filter of dimension m has 
m(m + 1)/2 free parameters, whereas the dynamic network has a constant number of 80 
adjustable parameters. This shows clearly that dynamic synapses enable a small network 
to mimic a wide range of possible quadratic target filters. 

1 In order to apply such a conjugate gradient algorithm ones has to calculate the partial derivatives 
Ii E [z zQ ] Ii E[z zQ] Ii E[z zQ] Ii E[z zQ ] ( •. ) . . 

Ii u'· . , Ii n '· . , Ii F: . and Ii w. . for all synapses ~J ill the network. For more detaIls 
l.J '&J 'l.J 'I., 

about conjugate gradient algorithms see e.g. [5]. 
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Figure 3: A network with units coupled by dynamic synapses can approximate randomly 
drawn quadratic filters. A Network architecture. The network had one input unit, 10 hidden 
units (5 excitatory, 5 inhibitory), and one output unit, see Fig. 2 for details. B One of the 
input patterns used in the training ensemble. For clarity, only a portion of the actual input 
is shown. C Output of the network prior to training, with random initialization of the pa­
rameters, and the output of the dynamic network after learning. The target was the output 
of a quadratic filter Q E QlQ. The filter coefficients hkl (1 :::; k, l :::; 10) were generated 
randomly by subtracting J-t/2 from a random number generated from an exponential distri­
bution with mean J-t = 3. D Performance after network training. For different sizes of HQ 
(HQ is a symmetric m x m matrix) we plotted the average performance (mse measured on 
a test set) over 20 different filters Q, i.e. 20 randomJy generated matrices HQ. 

3 Comparison with the model of Back and Tsoi 

Our dynamic network model is not the first to incorporate temporal dynamics via dynamic 
synapses. Perhaps the earliest suggestion for a role for synaptic dynamics in network com­
putation was by [7]. More recently, a number of networks have been proposed in which 
synapses implemented linear filters; in particular [6]. 

To assess the performance of our network model in relation to the model proposed in [6] 
we have analyzed the performance of our dynamic network model for the same system 
identification task that was employed as benchmark task in [6]. The goal of this task is to 
learn a filter F with (Fx)(t) = sin(u(t)) where u(t) is the output of a linear filter applied 
to the input time series X(t).2 

The result is summarized in Fig. 4. It can clearly be seen that our network model (see 
Fig. 3A for the network architecture) is able to learn this particular filter. The mean square 
error (mse) on the test data is 0.0010, which is slightly smaller than the mse of 0.0013 re­
ported in [6]. Note that the network Back and Tsoi used to learn the task had 130 adjustable 
parameters (13 parameters per IIR synapse, 10 hidden units) whereas our network model 
had only 80 adjustable parameters (all parameters U ij , F ij , Dij and W ij were adjusted 
during learning). 

2U(t) is the solution to the difference equation u(t)-1.99u(t-1)+ 1.572u(t-21)-0.4583u(t-
31) = O.0154x(t) + O.0462x(t - 1) + O.0462x(t - 2 1) + O.0154x(t - 31). Hence, u(t) is the 
output of a linear filter applied to the input x(t). 
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Figure 4: Performance of our model on the system identification task used in [6]. The 
network architecture is the same as in Fig. 3. A One of the input patterns used in the 
training ensemble. B Output of the network after learning and the target. C Comparison 
of the mean square error (in units of to-3) achieved on test data by the model of Back and 
Tsoi (BT) and by the dynamic network (DN). D Comparison of the number of adjustable 
parameters. The network model of Back and Tsoi (BT) utilizes slightly more adjustable 
parameters than the dynamic network (DN). 
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Figure 5: Impact of different synaptic parameters on the learning capabilities of a dynamic 
network. The size of a square (the "impact") is proportional to the inverse of the mean 
squared error averaged over N trials. A In each trial (N = 100) a different quadratic filter 
matrix HQ (m = 6) was randomly generated as described in Fig. 3. Along the diagonal 
one can see the impact of a single parameter, whereas the off-diagonal elements (which are 
symmetric) represent the impact of changing pairs of parameters. B The impact of subsets 
of size three is shown where the labels indicate which parameter is not included. C Same 
interpretation as for panel A but the results shown (N = 20) are for the filter used in [6]. 
D Same interpretation as for panel B but the results shown (N = 20) are for the same filter 
as in panel C. 

This shows that a very simple feedforward network with biologically realistic synaptic dy­
namics yields performance comparable to that of artificial networks that were previously 
designed to yield good performance in the time series domain without any claims of bio­
logical realism. 

4 Which Parameters Matter? 

It remains an open experimental question which synaptic parameters are subject to use­
dependent plasticity, and under what conditions. For example, long term potentiation ap­
pears to change synaptic dynamics between pairs of layer 5 cortical neurons [8] but not in 
the hippocampus [9]. We therefore wondered whether plasticity in the synaptic dynamics is 
essential for a dynamic network to be able to learn a particular target filter. To address this 
question, we compared network performance when different parameter subsets were opti­
mized using the conjugate gradient algorithm, while the other parameters were held fixed. 
In all experiments, the fixed parameters were chosen to ensure heterogeneity in presynaptic 
dynamics. 



Fig. 5 shows that changing only the postsynaptic parameter W has comparable impact to 
changing only the presynaptic parameters U or D, whereas changing only F has little im­
pact on the dynamics of these networks (see diagonal of Fig. 5A and Fig. 5C). However, to 
achieve good performance one has to change at least two different types of parameters such 
as {W, U} or {W, D} (all other pairs yield worse performance). Hence, neither plasticity 
in the presynaptic dynamics (U, D, F) alone nor plasticity of the postsynaptic efficacy (W) 
alone was sufficient to achieve good performance in this model. 

5 A Universal Approximation Theorem for Dynamic Networks 

In the preceding sections we had presented empirical evidence for the approximation ca­
pabilities of our dynamic network model for computations in the time series domain. This 
gives rise to the question, what the theoretical limits of their approximation capabilities 
are. The rigorous theoretical result presented in this section shows that basically there 
are no significant a priori limits. Furthermore, in spite of the rather complicated system 
of equations that defines dynamic networks, one can give a precise mathematical charac­
terization of the class of filters that can be approximated by them. This characterization 
involves the following basic concepts. An arbitrary filter F is called time invariant if a 
shift of the input functions by a constant to just causes a shift of the output function by the 
same constant to. Another essential property of filters is fading memory. A filter F has 
fading memory if and only if the value of F;f(O) can be approximated arbitrarily closely 
by the value of F~(O) for functions ~ that approximate the functions ;f for sufficiently 
long bounded intervals [-T, 0]. Interesting examples of linear and nonlinear time invariant 
filters with fading memory can be generated with the help of representations of the form 
(Fx)(t) = Iooo ... Iooo x(t - Tt) ..... x(t - Tk)hh, . .. ,Tk)dTl ... dTk for measurable 
and essentially bounded functions x : R -+ R (with hELl). One refers to such an integral 
as a Volterra term of order k. Note that for k = 1 it yields the usual representation for a 
linear time invariant filter. The class of filters that can be represented by Volterra series, 
i.e., by finite or infinite sums of Volterra terms of arbitrary order, has been investigated for 
quite some time in neurobiology and engineering. 

Theorem 1 Assume that X is the class of functions from R into [Bo, B l ] which satisfy 
Ix(t) - x(s)1 ~ B2 ·It - sl for all t,s E ffi, where B o,Bl ,B2 are arbitrary real-valued 
constants with 0 < Bo < Bl and 0 < B 2. Let F be an arbitrary filter that maps vectors 
of functions ;f = (Xl, ... ,xn) E xn into functions from R into ~ Then the following are 
equivalent: 

(a) F can be approximated by dynamic networks' N defined in Fig. 2 (i.e., for any 
€ > 0 there exists such network N such that I (F;f)(t) - (N ;f)(t) I < € for all 
;f E xn and all t E R) 

(b) F can be approximated by dynamic networks (see Fig. 2) with just a single layer 
of sigmoidal neurons 

( c) F is time invariant and has fading memory 

(d) F can be approximated by a sequence of (finite or infinite) Volterra series. 

The proof of Theorem 1 relies on the Stone-Weierstrass Theorem, and is contained as the 
proof of Theorem 3.4 in [10]. 

The universal approximation result contained in Theorem 1 turns out to be rather robust 
with regard to changes in the definition of a dynamic network. Dynamic networks with just 
one layer of dynamic synapses and one subsequent layer of sigmoidal gates can approxi­
mate the same class of filters as dynamic networks with an arbitrary number of layers of 



dynamic synapses and sigmoidal neurons. It can also be shown that Theorem 1 remains 
valid if one considers networks which have depressing synapses only or if one uses the 
model for synaptic dynamics proposed in [1]. 

6 Discussion 

Our central hypothesis is that rapid changes in synaptic strength, mediated by mechanisms 
such as facilitation and depression, are an integral part of neural processing. We have ana­
lyzed the computational power of such dynamic networks, which represent a new paradigm 
for neural computation on time series that is based on biologically realistic models for 
synaptic dynamics [11]. 

Our analytical results show that the class of nonlinear filters that can be approximated by 
dynamic networks, even with just a single hidden layer of sigmoidal neurons, is remarkably 
rich. It contains every time invariant filter with fading memory, hence arguable every filter 
that is potentially useful for a biological organism. 

The computer simulations we performed show that rather small dynamic networks are not 
only able to perform interesting computations on time series, but their performance is com­
parable to that of previously considered artificial neural networks that were designed for 
the purpose of yielding efficient processing of temporal signals. We have tested dynamic 
networks on tasks such as the learning of a randomly chosen quadratic filter, as well as on 
the learning task used in [6], to illustrate the potential of this architecture. 
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