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Abstract 

Preliminary work by the authors made use of the so-called "Man­
hattan world" assumption about the scene statistics of city and 
indoor scenes. This assumption stated that such scenes were built 
on a cartesian grid which led to regularities in the image edge gra­
dient statistics. In this paper we explore the general applicability 
of this assumption and show that, surprisingly, it holds in a large 
variety of less structured environments including rural scenes. This 
enables us, from a single image, to determine the orientation of the 
viewer relative to the scene structure and also to detect target ob­
jects which are not aligned with the grid. These inferences are 
performed using a Bayesian model with probability distributions 
(e.g. on the image gradient statistics) learnt from real data. 

1 Introduction 

In recent years, there has been growing interest in the statistics of natural images 
(see Huang and Mumford [4] for a recent review). Our focus, however, is on the 
discovery of scene statistics which are useful for solving visual inference problems. 
For example, in related work [5] we have analyzed the statistics of filter responses 
on and off edges and hence derived effective edge detectors. 

In this paper we present results on statistical regularities of the image gradient 
responses as a function of the global scene structure. This builds on preliminary 
work [2] on city and indoor scenes. This work observed that such scenes are based 
on a cartesian coordinate system which puts (probabilistic) constraints on the image 
gradient statistics. 

Our current work shows that this so-called "Manhattan world" assumption about 
the scene statistics applies far more generally than urban scenes. Many rural scenes 
contain sufficient structure on the distribution of edges to provide a natural cartesian 
reference frame for the viewer. The viewers' orientation relative to this frame can 
be determined by Bayesian inference. In addition, certain structures in the scene 
stand out by being unaligned to this natural reference frame. In our theory such 



structures appear as "outlier" edges which makes it easier to detect them. Informal 
evidence that human observers use a form of the Manhattan world assumption is 
provided by the Ames room illusion, see figure (6), where the observers appear 
to erroneously make this assumption, thereby grotesquely distorting the sizes of 
objects in the room. 

2 Previous Work and Three- Dimensional Geometry 

Our preliminary work on city scenes was presented in [2]. There is related work in 
computer vision for the detection of vanishing points in 3-d scenes [1], [6] (which 
proceeds through the stages of edge detection, grouping by Hough transforms, and 
finally the estimation of the geometry). 

We refer the reader to [3] for details on the geometry of the Manhattan world 
and report only the main results here. Briefly, we calculate expressions for the 
orientations of x, y, z lines imaged under perspective projection in terms of the 
orientation of the camera relative to the x, y, z axes. The camera orientation relative 
to the xyz axis system may be specified by three Euler angles: the azimuth (or 
compass angle) a, corresponding to rotation about the z axis, the elevation (3 above 
the xy plane, and the twist'Y about the camera's line of sight. We use ~ = (a, (3, 'Y) 
to denote all three Euler angles of the camera orientation. Our previous work [2] 
assumed that the elevation and twist were both zero which turned out to be invalid 
for many of the images presented in this paper. 

We can then compute the normal orientation of lines parallel to the x, y, z axes, 
measured in the image plane, as a function of film coordinates (u, v) and the camera 
orientation ~. We express the results in terms of orthogonal unit camera axes ii, b 
and c, which are aligned to the body of the camera and are determined by ~. For 
x lines (see Figure 1, left panel) we have tan Ox = -(ucx + fax)/(vcx + fbx), where 
Ox is the normal orientation of the x line at film coordinates (u, v) and f is the focal 
length of the camera. Similarly, tanOy = -(ucy + fay)/(vcy + fb y) for y lines and 
tanOz = -(ucz + faz)/(vcz + fbz) for z lines. In the next section will see how to 
relate the normal orientation of an object boundary (such as x,y,z lines) at a point 
(u, v) to the magnitude and direction of the image gradient at that location. 
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Figure 1: (Left) Geometry of an x line projected onto (u,v) image plane. 0 is the 
normal orientation of the line in the image. (Right) Histogram of edge orientation 
error (displayed modulo 180°). Observe the strong peak at 0°, indicating that 
the image gradient direction at an edge is usually very close to the true normal 
orientation of the edge. 

3 Pon and Poff : Characterizing Edges Statistically 

Since we do not know where the x, y, z lines are in the image, we have to infer their 
locations and orientations from image gradient information. This inference is done 



using a purely local statistical model of edges. A key element of our approach is that 
it allows the model to infer camera orientation without having to group pixels into 
x, y, z lines. Most grouping procedures rely on the use of binary edge maps which 
often make premature decisions based on too little information. The poor quality 
of some of the images - underexposed and overexposed - makes edge detection 
particularly difficult, as well as the fact that some of the images lack x, y, z lines 
that are long enough to group reliably. 

Following work by Konishi et al [5], we determine probabilities Pon(Ea) and 
POf!(Ea) for the probabilities of the image gradient magnitude Ea at position it 
in the image conditioned on whether we are on or off an edge. These distributions 
quantify the tendency for the image gradient to be high on object boundaries and 
low off them, see Figure 2. They were learned by Konishi et al for the Sowerby 
image database which contains one hundred presegmented images. 

Figure 2: POf!(Y) (left) and Pon(y)(right), the empirical histograms of edge re­

sponses off and on edges, respectively. Here the response y = IV II is quantized to 

take 20 values and is shown on the horizontal axis. Note that the peak of POf!(Y) 
occurs at a lower edge response than the peak of Pon (y). 

We extend the work of Konishi et al by putting probability distributions on how 
accurately the image gradient direction estimates the true normal direction of the 
edge. These were learned for this dataset by measuring the true orientations of the 
edges and comparing them to those estimated from the image gradients. 

This gives us distributions on the magnitude and direction of the intensity gradient 
Pon CEaIB), Pof! CEa), where Ea = (Ea, CPa), B is the true normal orientation of the 
edge, and CPa is the gradient direction measured at point it = (u, v). We make a 
factorization assumption that Pon(EaIB) = Pon(Ea)Pang(CPa - B) and POf!(Ea) = 
Pof!(Ea)U(cpa). Pang(.) (with argument evaluated modulo 271" and normalized to 
lover the range 0 to 271") is based on experimental data, see Figure 1 (right), and 
is peaked about 0 and 71". In practice, we use a simple box-shaped function to 
model the distribution: Pang (r5B) = (1 - f)/47 if r5B is within angle 7 of 0 or 71", and 
f/(271" - 47) otherwise (i.e. the chance of an angular error greater than ±7 is f ). 
In our experiments f = 0.1 and 7 = 4° for indoors and 6° outdoors. By contrast, 
U(.) = 1/271" is the uniform distribution. 

4 Bayesian Model 

We devised a Bayesian model which combines knowledge of the three-dimensional 
geometry of the Manhattan world with statistical knowledge of edges in images. The 
model assumes that, while the majority of pixels in the image convey no information 
about camera orientation, most of the pixels with high edge responses arise from 
the presence of x, y, z lines in the three-dimensional scene. An important feature of 
the Bayesian model is that it does not force us to decide prematurely which pixels 



are on and off an object boundary (or whether an on pixel is due to x,y, or z), but 
allows us to sum over all possible interpretations of each pixel. 

The image data Eil at a single pixel u is explained by one of five models mil: 
mil = 1,2,3 mean the data is generated by an edge due to an x, y, z line, respectively, 
in the scene; mil = 4 means the data is generated by an outlier edge (not due to an 
x, y, z line); and mil = 5 means the pixel is off-edge. The prior probability P(mil) 
of each of the edge models was estimated empirically to be 0.02,0.02,0.02,0.04,0.9 
for mil = 1,2, ... , 5. 

Using the factorization assumption mentioned before, we assume the probability of 
the image data Eil has two factors, one for the magnitude of the edge strength and 
another for the edge direction: 

P(Eillmil, ~,u) = P(Eillmil)P(¢illmil, ~,u) (1) 

where P(Eillmil) equals Po/!(Eil ) if mil = 5 or Pon(Eil ) if mil # 5. Also, 
P(¢illmil, ~,u) equals Pang(¢il-O(~,mil'U)) if mil = 1,2,3 or U(¢il) if mil = 4,5. 
Here O(~, mil, u)) is the predicted normal orientation of lines determined by the 
equation tan Ox = -(ucx+ fax)/(vcx+ fbx) for x lines, tanOy = -(ucy+ fay)/(vcy+ 
fb y) for y lines, and tanOz = -(ucz + faz)/(vcz + fbz) for z lines. 

In summary, the edge strength probability is modeled by Pon for models 1 through 
4 and by po/! for model 5. For models 1,2 and 3 the edge orientation is modeled by 
a distribution which is peaked about the appropriate orientation of an x, y, z line 
predicted by the camera orientation at pixel location u; for models 4 and 5 the edge 
orientation is assumed to be uniformly distributed from 0 through 27f. 

Rather than decide on a particular model at each pixel, we marginalize over all five 
possible models (i.e. creating a mixture model): 
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P(Eill~,u) = 2: P(Eillmil, ~,u)P(mil) (2) 
mit=l 

Now, to combine evidence over all pixels in the image, denoted by {Ea}, we assume 
that the image data is conditionally independent across all pixels, given the camera 
orientation ~: 

P({Ea}I~) = II P(Eill~,u) (3) 
il 

(Although the conditional independence assumption neglects the coupling of gra­
dients at neighboring pixels, it is a useful approximation that makes the model 
computationally tractable.) Thus the posterior distribution on the camera orienta-
tion is given by nil P(Eill~, U)P(~)/Z where Z is a normalization factor and P(~) 
is a uniform prior on the camera orientation. 

To find the MAP (maximum a posterior) estimate, our algorithm maximizes the 
log poste-
rior term log[P({Eil}I~)P(~)] = logP(~) + L:illog[L:muP(Eillmil,~,u)P(mil)] 
numerically by searching over a quantized set of compass directions ~ in a certain 
range. For details on this procedure, as well as coarse-to-fine techniques for speeding 
up the search, see [3]. 



5 Experimental Results 

This section presents results on the domains for which the viewer orientation relative 
to the scene can be detected using the Manhattan world assumption. In particular, 
we demonstrate results for : (I) indoor and outdoor scenes (as reported in [2]), (II) 
rural English road scenes, (III) rural English fields, (IV) a painting of the French 
countryside, (V) a field of broccoli in the American mid-west, (VI) the Ames room, 
and (VII) ruins of the Parthenon (in Athens). The results show strong success 
for inference using the Manhattan world assumption even for domains in which 
it might seem unlikely to apply. (Some examples of failure are given in [3]. For 
example, a helicopter in a hilly scene where the algorithm mistakenly interprets the 
hill silhouettes as horizontal lines ). 

The first set of images were of city and indoor scenes in San Francisco with images 
taken by the second author [2]. We include four typical results, see figure 3, for 
comparison with the results on other domains. 

Figure 3: Estimates of the camera orientation obtained by our algorithm for two 
indoor scenes (left) and two outdoor scenes (right). The estimated orientations of 
the x, y lines, derived for the estimated camera orientation q!, are indicated by the 
black line segments drawn on the input image. (The z line orientations have been 
omitted for clarity.) At each point on a sub grid two such segments are drawn - one 
for x and one for y. In the image on the far left, observe how the x directions align 
with the wall on the right hand side and with features parallel to this wall. The y 
lines align with the wall on the left (and objects parallel to it). 

We now extend this work to less structured scenes in the English countryside. Fig­
ure (4) shows two images of roads in rural scenes and two fields. These images 
come from the Sowerby database. The next three images were either downloaded 
from the web or digitized (the painting). These are the mid-west broccoli field , the 
Parthenon ruins, and the painting of the French countryside. 

6 Detecting Objects in Manhattan world 

We now consider applying the Manhattan assumption to the alternative problem of 
detecting target objects in background clutter. To perform such a task effectively 
requires modelling the properties of the background clutter in addition to those of 
the target object. It has recently been appreciated that good statistical modelling 
of the image background can improve the performance of target recognition [7]. 

The Manhattan world assumption gives an alternative way of probabilistically mod­
elling background clutter. The background clutter will correspond to the regular 
structure of buildings and roads and its edges will be aligned to the Manhattan 
grid. The target object, however, is assumed to be unaligned (at least, in part) to 
this grid. Therefore many of the edges of the target object will be assigned to model 
4 by the algorithm. (Note the algorithm first finds the MAP estimate q!* of the 



Figure 4: Results on rural images in England without strong Manhattan structure. 
Same conventions as before. Two images of roads in the countryside (left panels) 
and two images of fields (right panel). 

Figure 5: Results on an American mid-west broccoli field, the ruins of the 
Parthenon, and a digitized painting of the French countryside. 

compass orientation, see section (4), and then estimates the model by doing MAP 
of P(ma!Ea, ~*,'it) to estimate ma for each pixel 'it.) This enables us to signifi­
cantly simplify the detection task by removing all edges in the images except those 
assigned to model 4. 

The Ames room, see figure (6), is a geometrically distorted room which is con­
structed so as to give the false impression that it is built on a cartesian coordinate 
frame when viewed from a special viewpoint. Human observers assume that the 
room is indeed cartesian despite all other visual cues to the contrary. This distorts 
the apparent size of objects so that, for example, humans in different parts of the 
room appear to have very different sizes. In fact, a human walking across the room 
will appear to change size dramatically. Our algorithm, like human observers, in­
terprets the room as being cartesian and helps identify the humans in the room as 
outlier edges which are unaligned to the cartesian reference system. 

7 Summary and Conclusions 

We have demonstrated that the Manhattan world assumption applies to a range 
of images, rural and otherwise, in addition to urban scenes. We demonstrated a 
Bayesian model which used this assumption to infer the orientation of the viewer 
relative to this reference frame and which could also detect outlier edges which are 
unaligned to the reference frame. A key element of this approach is the use of image 
gradient statistics, learned from image datasets, which quantify the distribution of 
the image gradient magnitude and direction on and off object boundaries. We 
expect that there are many further image regularities of this type which can be 
used for building effective artificial vision systems and which are possibly made use 
of by biological vision systems. 
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Figure 6: Detecting people in Manhattan world. The left images (top and bottom) 
show the estimated scene structure. The right images show that people stand out 
as residual edges which are unaligned to the Manhattan grid. The Ames room (top 
panel) violates the Manhattan assumption but human observers, and our algorithm, 
interpret it as if it satisfied the assumptions. In fact, despite appearances, the two 
people in the Ames room are really the same size. 
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