
On iterative Krylov-dogleg trust-region
steps for solving neural networks
nonlinear least squares problems

Eiji Mizutani
Department of Computer Science

National Tsing Hua University
Hsinchu, 30043 TAIWAN R.O.C.

eiji@wayne.cs.nthu.edu.tw

James w. Demmel
Mathematics and Computer Science
University of California at Berkeley,

Berkeley, CA 94720 USA
demmel@cs.berkeley.edu

Abstract

This paper describes a method of dogleg trust-region steps, or re­
stricted Levenberg-Marquardt steps, based on a projection pro­
cess onto the Krylov subspaces for neural networks nonlinear least
squares problems. In particular, the linear conjugate gradient (CG)
method works as the inner iterative algorithm for solving the lin­
earized Gauss-Newton normal equation, whereas the outer nonlin­
ear algorithm repeatedly takes so-called "Krylov-dogleg" steps, re­
lying only on matrix-vector multiplication without explicitly form­
ing the Jacobian matrix or the Gauss-Newton model Hessian. That
is, our iterative dogleg algorithm can reduce both operational
counts and memory space by a factor of O(n) (the number of pa­
rameters) in comparison with a direct linear-equation solver. This
memory-less property is useful for large-scale problems.

1 Introduction

We consider the so-called n eural networks nonlinear least squares prob­
lem 1 wherein the objective is to optimize the n weight parameters of neural
networks (NN) [e.g., multilayer perceptrons (MLP)]' denoted by an n-dimensional
vector 8 , by minimizing the following:

(1)

where ap (8) is the MLP output for the pth training data pattern and tp is the
desired output. (Of course, these become vectors for a multiple-output MLP.) Here
r(8) denotes the m-dimensional residual vector composed of ri(8) , i = 1, ... , m ,
for all m training data.

1The posed problem can be viewed as an implicitly constrained optimization problem as
long as hidden-node outputs are produced by sigmoidal "squashing" functions [1] . Our al­
gorithm exploits the special structure of the sum of squared error measure in Equation (1);
hence , the other objective functions are outside the scope of this paper.

The gradient vector and Hessian matrix are given by g = g(9) == JT rand
H = H(9) == JT J +S, where J is the m x n Jacobian matrix of r, and S denotes the
matrix of second-derivative terms. If S is simply omitted based on the "small resid­
ual" assumption, then the Hessian matrix reduces to the Gauss-Newton model
Hessian: i.e., JT J. Furthermore, a family of quasi-Newton methods can be ap­
plied to approximate term S alone, leading to the augmented Gauss-Newton model
Hessian (see, for example, Mizutani [2] and references therein).

With any form of the aforementioned Hessian matrices, we can collectively write
the following Newton formula to determine the next step lj in the course of the
Newton iteration for 9next = 9now + lj:

Hlj = -g. (2)

This linear system can be solved by a direct solver in conjunction with a suitable
matrix factorization. However, typical criticisms towards the direct algorithm are:

• It is expensive to form and solve the linear equation (2), which requires
O(mn2) operations when m > n;

• It is expensive to store the (symmetric) Hessian matrix H, which requires
n(n2+1) memory storage.

These issues may become much more serious for a large-scale problem.

In light of the vast literature on the nonlinear optimization, this paper describes how
to alleviate these concerns, attempting to solve the Newton formula (2) approxi­
mately by iterative methods, which form a family of inexact (or truncated)
Newton methods (see Dembo & Steihaug [3], for instance). An important sub­
class ofthe inexact Newton methods are Newton-Krylov methods. In particular, this
paper focuses on a Newton-CG-type algorithm, wherein the linear Gauss-Newton
normal equation,

(3)

is solved iteratively by the linear conjugate gradient method (known as CGNR)
for a dogleg trust-region implementation of the well-known Levenberg-Marquardt
algorithm; hence, the name "dogleg trust-region Gauss-Newton-CGNR" algorithm,
or "iterative Krylov-dogleg" method (similar to Steihaug [4]; Toint [5]).

2 Direct Dogleg Trust-Region Algorithms

In the NN literature, several variants of the Levenberg-Marquardt algorithm
equipped with a direct linear-equation solver, particularly Marquardt's original
method, have been recognized as instrumental and promising techniques; see, for
example, Demuth & Beale [6]; Masters [7]; Shepherd [8]. They are based on a simple
direct control ofthe Levenberg-Marquardt parameter J.L in (H+J.LI)lj = -g, although
such a simple J.L-control can cause a number of problems, because of a complicated
relation between parameter J.L and its associated step length (see Mizutani [9]).

Alternatively, a more efficient dogleg algorithm [10] can be employed that takes,
depending on the size of trust region R, the Newton step ljNewton [i.e., the solution
of Eq. (2)], the (restricted) Cauchy step ljCauchy' or an intermediate dogleg step:

dcl () ljdogleg = ljCauchy + h ljNewton - ljCauchy , (4)

which achieves a piecewise linear approximation to a trust-region step, or a restricted
Levenberg-Marquardt step. Note that ljCauchy is the step that minimizes the local

quadratic model in the steepest descent direction (i.e. , Eq. (8) with k = 1) . For
details on Equation (4) , refer to Powell [10]; Mizutani [9 , 2].

When we consider the Gauss-Newton step for 8Newton in Equation (4), we must
solve the overdetermined linear least squares problem: minimize8 Ilr + J8112, for
which three principal direct linear-equation solvers are:

(1) Normal equation approach (typically with Cholesky decomposition);

(2) QR decomposition approach to J 8 = -r;

(3) Singular value decomposition (SVD) approach to J8 = -r (only recom-
mended when J is nearly rank-deficient).

Among those three direct solvers, approach (1) to Equation (3) is fastest. (For more
details , refer to Demmel [11], Chapters 2 and 3.) In a highly overdetermined case
(with a large data set ; i.e. , m » n) , the dominant cost in approach (1) is the mn2

operations to form the Gauss-Newton model Hessian by:
m

JTJ = LU;U;' (5)
;=1

where uT is the ith row vector of J. This cost might be prohibitive even with
enough storage for JT J. Therefore, to overcome this limitation of direct solvers for
Equation (3), we consider an iterative scheme in the next section.

3 Iterative Krylov-Dogleg Algorithm

The iterative Krylov-dogleg step approximates a trust-region step by iteratively
approximating the Levenberg-Marquardt trajectory in the Krylov subspace via lin­
ear conjugate gradient iterates until the approximate trajectory hits the trust­
region boundary; i.e., a CG iterate falls outside the trust-region boundary. In this
context, the linear CGNR method is not intended to approximate the full Gauss­
Newton step [i.e. , the solution of Eq. (3)]. Therefore, the required number of CGNR­
iterations might be kept small [see Section 4].

The iterative process for the linear-equation solution sequence {8 k } is called the
inner 2 iteration, whereas the solution sequence {(h} from the Krylov-dogleg algo­
rithm is generated by the outer iteration (or epoch), as shown in Figure 1. We now
describe the inner iteration algorithm, which is identical to the standard linear CG
algorithm (see Demmel [11], pages 311-312) except steps 2, 4, and 5:

Algorithm 3.1 : The inner iteration of the Krylov-dogleg algorithm (see Figure 1).

1. Initialization:
80 = 0; do = ro = -gnow, and k = 1. (6)

2. Matrix-vector product (compare Eq. (5) and see Algorithm 3.2):
m

z = Hnowdk = J~ow(Jnowdk) = L(uT dk)u;. (7)
;=1

2Nonlinear conjugate gradient methods, such as Polak-Ribiere's CG (see Mizutani
and Jang [13]) and Moller's scaled CG [14], are also widely-employed for training MLPs,
but those nonlinear versions attempt to approximate the entire Hessian matrix by gen­
erating the solution sequence {Ih} directly as the outer nonlinear algorithm. Thus, they
ignore the special structure of the nonlinear least squares problem; so does Pearlmutter's
method [15] to the Newton formula, although its modification may be possible.

c
o
.~
.....
2
.....
Q)

"S o

Initialize Rn~. 90~

Compute E(9000)

Does

stopping criteria

hold?

YES ~
>-----~

NO

r'-';'~~'~';"';t~;~~;~'~""'1
i Algorithm 3. t i
L J

IF E(90",) ~ E(90~) YES
algorithm

:. :

IF Vnow ~ Vsmall

Algorithm for local-model check

Figure 1: The algorithmic flow of an iterative Krylov-dogleg algorithm. For detailed
procedures in the three dotted rectangular boxes, refer to Mizu tani and Demmel [12}
and Algorithm 3. 1 in text.

rL1rk- l
3. Analytical step size: 'fJk = dTz

k

4. Approximate solution:
li k = li k - 1 + 'fJk d k.

If Illikll < Rnow , then go onto the next step 5; otherwise compute

lik

lik = Rnowillikll '

and terminate.

5. Linear-system residual: r k = r k-l - 'fJkZ.

If IIrkl1 2 is small enough , then set Rnow f- Illik ll. and terminate.

Otherwise, continue with step 6.

r I r k 6. Improvement: {3k+l = rT r .
k-l k-l

(8)

(9)

7. Search direction : d k+1 = rk + {3k +l d k. Then, set k = k + 1 and back to step 2.

The first step given by Equation (8) is always the Cauchy step I5Cauchy ' moving

9now to the Cauchy point 9Cauchy when Rnow > III5Cauchyll . Then, departing
from 9 Cauchy , the linear CG constructs a Krylov-dogleg trajectory (by adding a CG

point one by one) towards the Gauss-Newton point 9Newton until the constructed
trajectory hits the trust-region boundary (i.e., Ill5k ll :::: Rnow is satisfied in step 4),
or till the linear-system residual becomes small in step 5 (unlikely to occur for
small forcing terms; e.g., 0.01) . In this way, the algorithm computes a vector
between the steepest descent direction and the Gauss-Newton direction, resulting
in an approximate Levenberg-Marquardt step in the Krylov subspace.

In step 2, the matrix-vector multiplication of Hdk in Equation (7) can be performed
with neither the Jacobian nor Hessian matrices explicitly required, keeping only
several n-dimensional vectors in memory at the same time, as shown next:

Algorithm 3.2: Matrix-vector multiplication step.

for i = 1 to m; i.e ., one sweep of all training data:

(a) do forward propagation to compute the MLP output a; (9) for datum i;
(b) do backpropagation 3 to obtain the ith row vector u T of matrix J;

(c) compute (uT dk)u; and add it to z ;

end for.

For one sweep of all m data, each of steps (a) and (b) costs at least 2mn (plus
additional costs that depend on the MLP architectures) and step (c) [i.e., Eq. (7)]
costs 4mn. Hence, the overall cost of the inner iteration (Algorithm 3.1) can be
kept as O(mn), especially when the number of inner iterations is small owing to
our strategy of upper-bounded trust-region radii (e.g., Rupper = 1 for the parity
problem). Note for "Algorithm for local-model check" in Figure 1 that evaluating
Vnow (a ratio between the actual error reduction and the reduction predicted by
the current local quadratic model) needs a procedure similar to Algorithm 3.2. For
more details on the algorithm in Figure 1, refer to Mizutani and Demmel [12] .

4 Experiments and Discussions

In the NN literature, there are numerous algorithmic comparisons available (see, for
example , Moller [14] ; Demuth & Beale [6] ; Shepherd [8] ; Mizutani [2 ,9, 16]). Due to
the space limitation, this section compares typical behaviors of our Krylov-dogleg
Gauss-Newton CGNR (or iterative dogleg) algorithm and Powell 's dogleg-based
algorithm with a direct linear-equation solver (or direct dogleg) for solving highly
overdetermined parity problems. In our numerical tests, we used a criterion, in
which the MLP output for the pth pattern, ap , can be regarded as either "on"
(1.0) if ap :::: 0.8, or "off" (-1.0) if ap :S -0.8; otherwise, it is "undecided ." The
initial parameter set was randomly generated in the range [-0.3 ,0.3]' and the two
algorithms started exactly at the same point in the parameter space.

Figure 2 presents MLP-Iearning curves in RMSE (root mean squared error) for the
20-bit and 14-bit parity problems. In (b) and (c), the total execution time [roughly
(b) 32 days (500 epochs); (c) two hours (450 epochs), both on 299-MHz UltraSparc]
of the direct dogleg algorithm was normalized for comparison purpose. Notably, the

3The batch-mode MLP backpropagation can be viewed as an efficient matrix-vector
multiplication (2mn operations) for computing the graclient .JTr wilhoutfor'ming explicitly
the m X n Jacobian matrix or the m-climensional residual vector (with some extra costs) .

1 - iterative dogleg
. direct dogleg

0.8

~ 0.6
::2
a: 0.4

0 .2

oL---~~------~

1 .. .1- iterative dogleg I
.j direct dogleg

0.8

~ 0.6
::2
a: 0.4

0.2 ~
O~----------~~

o 500
(a) Epoch

1000 o 0.5
(b) Normalized exec. time

0.8

~ 0.6
::2
a: 0.4

0 .2

..1- iterative dogleg I
·.1 direct dogleg

oL-~======--~~
o 0.5

(c) Normalized exec. time

Figure 2: MLP-learning curves of RMSE (root mean squared error) obtained by
the "iterative dogleg" (solid line) and the "direct dogleg" (broken line): (a) "epoch"
and (b) "normalized execution time" for the 20-bit parity problem with a standard
20 x 19 x 1 MLP with hyperbolic tangent node functions (m = 220 , n = 419), and
(c) "normalized execution time" for the 14-bit parity problem with a 14 x 13 x 1
MLP (m = 214, n = 209). In (a), (b), the iterative dogleg reduced the number of
incorrect patterns down to 21 (nearly RMSE = 0.009) at epoch 838, whereas the
direct dogleg reached the same error level at epoch 388. In (c), the iterative dogleg
solved it perfectly at epoch 1,034 and the direct dogleg did so at epoch 401.

iterative dogleg converged faster to a small RMSE 4 than the direct dogleg at an
early stage of learning even with respect to epoch. Moreover, the average number
of inner CG iterations per epoch in the iterative dogleg algorithm was quite small,
5.53 for (b) and 4.61 for (c). Thus, the iterative dogleg worked nearly (b) nine times
and (c) four times faster than the direct dogleg in terms of the average execution
time per epoch. Those speed-up ratios became smaller than n mainly due to the
aforementioned cost of Algorithm 3.2. Yet, as n increases, the speed-up ratio can
be larger especially when the number of inner iterations is reasonably small.

5 Conclusion and Future Directions

We have compared two batch-mode MLP-Iearning algorithms: iterative and direct
dogleg trust-region algorithms. Although such a high-dimensional parity problem is
very special in the sense that it involves a large data set but the size of MLP can be
kept relatively small, the algorithmic features of the two dogleg methods can be well
understood from the obtained experimental results. That is, the iterative dogleg
has the great advantage of reducing the cost of an epoch from O(mn2) to O(mn),
and the memory requirements from O(n2) to O(n), a factor of O(n) in both cases.
When n is large, this is a very large improvement. It also has the advantage offaster
convergence in the early epochs, achieving a lower RMSE after fewer epochs than
the direct dogleg. Its disadvantage is that it may need more epochs to converge to a
very small RMSE than the direct dogleg (although it might work faster in execution
time). Thus, the iterative dogleg is most attractive when attempting to achieve a
reasonably small RMSE on very large problems in a short period of time.

The iterative dogleg is a matrix-free algorithm that extracts information about the
Hessian matrix via matrix-vector multiplication ; this algorithm might be character­
ized as iterative batch-mode learning, an intermediate between direct batch-

4 A standard steepest descent-type online pattern-by-pattern learning (or incremental
gradient) algorithm (with or without a momentum term) fai led to converge to a small
RMSE in those parity problems due to hidden-node satl.lmtion [1].

mode learning and online pattern-by-pattern learning. Furthermore, the algorithm
might be implemented in a block-by-block updating mode if a large data set can
be split into multiple proper-size data blocks; so, it would be of our great inter­
est to compare the performance with online-mode learning algorithms for solving
large-scale real-world problems with a large-scale NN model.

Acknowledgments

We would like to thank Stuart Dreyfus (lEaR, UC Berkeley) and Rich Vuduc (CS,
UC Berkeley) for their valuable advice. The work was supported in part by SONY
US Research Labs., and in part by "Program for Promoting Academic Excellence
of Universities," grant 89-E-FA04-1-4, Ministry of Education, Taiwan.

References

[1] E. Mizutani, S. E. Dreyfus, and J.-S. R. Jang. On dynamic programming-like recursive
gradient formula for alleviating hidden-node satuaration in the parity problem. In
Proceedings of the International Workshop on Intelligent Systems Resolutions - the
8th Bellman Continuum, pages 100- 104, Hsinchu, TAIWAN, 2000.

[2] Eiji Mizutani. Powell's dogleg trust-region steps with the quasi-Newton augmented
Hessian for neural nonlinear least-squares learning. In Pr'oceedings of the IEEE Int'l
Conf. on Neural Networks (vol.2), pages 1239-1244, Washington, D.C., JuJy 1999.

[3] R. S. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale uncon­
strained optimization. Math. Prog., 26:190-212, 1983.

[4] Trond Steihaug. The conjugate gradient method and trust regions in large scale
optimization. SIAM J. Numer. Anal., 20(3):626- 637, 1983.

[5] P. L. Toint. On large scale nonlinear least squares calculations. SIAM J. Sci . Statist.
Comput., 8(3):416- 435, 1987.

[6] H. Demuth and M. Beale. Neural Network Toolbox ror Use with MATLAB . The
MathWorks, Inc., Natick, Massachusetts, 1998. User's Guide (version 3.0).

[7] Timothy Masters. Advanced algorithms for neural networ'ks: a C++ sourcebook. John
Wiley & Sons, New York, 1995.

[8] Adrian J. Shepherd. Second-Order Methods for Neural Networks: Fast and Reliable
Training Methods for Multi-Layer Perceptrons. Springer-Verlag, 1997.

[9] Eiji Mizutani. Computing Powell's dogleg steps for solving adaptive networks nonlin­
ear least-squares problems. In Proc. of the 8th Tnt'l Fuzzy Systems Association World
Congress (IFSA '99), vol.2, pages 959- 963, Hsinchu, Taiwan, August 1999.

[10] M. J. D. Powell. A new algorithm for unconstrained optimization. In Nonlinear
Pr'ogramming, pages 31-65. Edited by J.B. Rosen et al., Academic Press, 1970.

[11] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[12] Eiji Mizutani and James W. Demmel. On generalized dogleg trust-region steps using
the Krylov subspace for solving neural networks nonlinear least squares problems.
Technical report, Computer Science Dept., UC Berkeley, 2001. (In preparation).

[13] E. Mizutani and J.-S. R. Jang. Chapter 6: Derivative-based Optimization. In Neuro ­
Fuzzy and Soft Computing, pages 129- 172. J.-S. R. Jang, C.-T. Sun and E. Mizutani.
Prentice Hall, 1997.

[14] Martin Fodslette Moller. A scaled conjugate gradient algorithm for fast supervised
learning. N eural Networ'ks, 6:525-533, 1993.

[15] B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,
6(1):147-160, 1994.

[16] E. Mizutani, K. Nishio, N. Katoh, and M. Blasgen. Color device characterization of
electronic cameras by solving adaptive networks nonlinear least squares problems. In
Proc. of the 8th IEEE Int'l Conf. on Fuzzy Systems, vol. 2, pages 858- 862, 1999.

