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Abstract 

We present efficient algorithms for all-point-pairs problems , or 'N­
body '-like problems, which are ubiquitous in statistical learning. We 
focus on six examples, including nearest-neighbor classification, kernel 
density estimation, outlier detection , and the two-point correlation. 
These include any problem which abstractly requires a comparison of 
each of the N points in a dataset with each other point and would 
naively be solved using N 2 distance computations. In practice N 
is often large enough to make this infeasible. We present a suite of 
new geometric t echniques which are applicable in principle to any 
'N-body' computation including large-scale mixtures of Gaussians, 
RBF neural networks, and HMM 's. Our algorithms exhibit favorable 
asymptotic scaling and are empirically several orders of magnitude 
faster than the naive computation, even for small datasets. We are 
aware of no exact algorithms for these problems which are more effi­
cient either empirically or theoretically. In addition, our framework 
yields simple and elegant algorithms. It also permits two important 
generalizations beyond the standard all-point-pairs problems, which 
are more difficult. These are represented by our final examples, the 
multiple two-point correlation and the notorious n-point correlation. 

1 Introduction 

This paper is about accelerating a wide class of statistical methods that are naively 
quadratic in the number of datapoints. 1 We introduce a family of dual kd-tree 
traversal algorithms for these problems. They are the statistical siblings of powerful 
state-of-the-art N -body simulation algorithms [1 , 4] of computational physics, but the 
computations within statistical learning present new opportunities for acceleration and 
require t echniques more general than those which have been exploited for the special 
case of potential-based problems involving forces or charges. 

We describe in detail a dual-tree algorithm for calculating the two-point correlation, 
the simplest case of the problems we consider; for the five other statistical problems we 
consider , we show only performance results for lack of space. The last of our examples, 

1 In the general case, when we are computing distances between two different datasets 
having sizes Nl and N2, as in nearest-neighbor classification with separate training and test 
sets, say, the cost is O(NlN2). 



Figure 1: A kd-tree. (a) Nodes at level 3. (b) Nodes at level 5. The dots are the individual 
data points. The sizes and positions of the disks show the node counts and centroids. The 
ellipses and rectangles show the covariances and bounding boxes. (c) The rectangles show the 
nodes pruned dlITing a RangeSearch for one (depicted) query and radius. (d) More pruning 
is possible using RangeCount instead of RangeSearch. 

the n-point correlation, illustrates a generalization from all-point-pairs problems to all­
n-tuples problems, which are much harder (naively O(N ")). For all the examples, we 
believe there exist no exact algorithms which are faster either empirically or theoret­
ically, nor any approximate algorithms that are faster while providing guarantees of 
acceptably high accuracy (as ours do). For n-tuple N -body problems in particular, 
this type of algorithm design appears to have surpassed the existing computational 
barriers. In addition, all the algorithms in this paper can be compactly defined and 
are easy to implement. 

Statistics and geometry. We proceed by viewing these statistical problems as 
geometric problems, exploiting the data's hyperstructure. Each algorithm utilizes 
Multiresolution kd-trees, providing a geometric partitioning of the data space which 
is used to reason about entire chunks of the data simultaneously. 

A review of kd-trees and mrkd-trees. A kd-tree [3] records a d-dimensional data 
set containing N records. Each node represents a set of data points by their bounding 
box. Non-leaf nodes have two children, obtained by splitting the widest dimension of 
the parent 's bounding box. For the purposes of this paper, nodes are split until they 
contain only one point, where they become leaves. An mrkd-tree [2, 6] is a conventional 
kd-tree decorated, at each node , with extra statistics about the node's data, such as 
their count , centroid, and covariance. They are an instance of the idea of cached 
sufficient statistics [8] and are quite efficient in practice. 2 See Figure 1. 

2 The 2-point correlation function 

The two-point correlation is a spatial statistic which is of fundamental importance in 
many natural sciences, in particular astrophysics and biology. It can be thought of 
roughly as a measure of the dumpiness of a set of points. It is easily defined as the 
number of pairs of points in a dataset which lie within a given radius l' of each other. 

2.1 Previous approaches 

Quadratic algorithm. The most naive approach is to simply compare each datum 
to each other one, incrementing a count if the distance between them is less than 1'. 

This has O(N 2 ) cost , unacceptably high for problems of practical interest. 

2 mrkd-trees can be built quickly, in time O( dN log N +d2 N). Although we have not needed 
to do so, they can modified to become disk-resident for data sets with billions of records, and 
they can be efficiently updated incrementally. They scale poorly to higher dimensions but 
recent work [7] significantly remedies the dimensionality problem. 



Binning and gridding algorithms. The schemes in widespread use [12, 13] are 
mainly of this sort. The idea of binning is simply to divide the data space into a fine 
grid defining a set of bins, perform the quadratic algorithm on the bins as if they were 
individual data, then multiply by the bin sizes as appropriate to get an estimate of 
the total count. The idea of grid ding is to divide the data space into a coarse grid, 
perform the quadratic algorithm within each bin, and sum the results over all bins to 
get an estimate of the total count. These are both of course very approximate methods 
yielding large errors. They are not usable when r is small or r is large , respectively. 

Range-searching with a kd-tree. An approach to the two-point correlation com­
putation that has been taken is to treat it as a range-searching problem [5 , 10], since 
kd-trees have been historically almost synonymous with range-searching. The idea 
is that we will make each datapoint in turn a query point and then execute a range 
search of the kd-tree to find all other points within distance r of the query. A search is 
a depth-first traversal of the kd-tree, always checking the minimum possible distance 
dmin between the query and the hyper-rectangle surrounding the current node. If 
dmin > r there is no point in visiting the node's children, and computation is saved. 
We call this exclusion-based pruning. 

The range searching avoids computing most of the distances between pairs of points 
further than r apart, which is a considerable saving if r is small. But is it the best we 
can do? And what if r is large? We now propose several layers of new approaches. 

2.2 Better geometric approaches: new algorithms 

Single-tree search (Range-Counting Algorithm). A straightforward extension can 
exploit the fact that unlike conventional use of range searching, these statistics fre­
quently don 't need to retrieve all the points in the radius but merely to count them. 
The mrkd-tree has, in each node, the count of the number of data it contains-the 
simplest kind of cached sufficient statistic. At a given node, if the distance between 
the query and the farthest point of the bounding box of the data in the node is smaller 
than the radius r, clearly every datum in the node is within range of the query. We 
can then simply add the node 's stored count to the total count. We call this subsump­
tion. 3 (Note that both exclusion and subsumption are simple computations because 
the geometric regions are always axis-parallel rectangles.) This paper introduces new 
single-tree algorithms for most of our examples, though it is not our main focus. 

Dual-tree search. This is the primary topic of this paper. The idea is to consider 
the query points in chunks as well , as defined by nodes in a kd-tree. In the general case 
where the query points are different from the data being queried, a separate kd-tree is 
built for the query points; otherwise a query node and a data node are simply pointers 
into the same kd-tree. Dual-tree search can be thought of as a simultaneous traversal 
of two trees, instead of iterating over the query points in an outer loop and only 
exploiting single-tree-search in the inner loop. Dual-tree search is based on node-node 
comparisons while Single-tree search was based on point-node comparisons. 

Pseudocode for a recursive procedure called TwoPointO is shown in Figure 2. It 
counts the number of pairs of points (xq E QNODE, Xd E DNoDE) such that IXq -

xdl < r. Before doing any real work, the procedure checks whether it can perform 
an exclusion pruning (in which case the call terminates, returning 0) or subsumption 
pruning (in which case the call terminates, returning the product of the number of 
points in the two nodes). If neither of these prunes occur, then depending on whether 
QNODE and/or DNODE are leaves, the corresponding recursive calls are made. 

3Subsumption can also be exploited when other aggregate statistics, such as centroids or 
covariances of sets of points in a range are required [2 , 14, 9]. 



TwoPoint( QNODE,DNODE ,r) 
if excludes(QNODE,DNODE,r), return ; 

if subsumes(QNoDE,DNoDE,r) 
total = total + ( count(QNoDE) X count(DNoDE) ); return; 

if leaf(QNoDE) and leaf(DNoDE) 
if distance(QNoDE,DNODE) < r, total = total + 1; 

if leaf(QNoDE) and notleaf(DNoDE) 
TwoPoint( Q NODE,leftchild (D NODE), r ); Two Point (Q NODE,rightchild (D NODE) ,r ); 

if notleaf(QNoDE) and le af(DNoDE) 
TwoPoint(leftchild(QNoDE ) ,DNoDE,r); TwoPoint ( rightchild ( QNODE) ,DNoDE,r); 

if notleaf(QNoDE) and notleaf(DNoDE) 
TwoPoint(leftchild(QNoDE) ,left child(DNoDE) ,r ); TwoPoint(leftchild ( QNODE) ,rightchild(DNoDE) ,r); 
TwoPoint(rightchild( QNODE) ,leftchild (DNoDE) ,r); TwoPoint(rightchild(QNoDE) ,rightchild(DNoDE) ,r); 

Figure 2: A recursive Dual-tree code. All the reported algorithms have a similar brevity. 

Importantly, both kinds of prunings can now apply to many query points at once, 
instead of each nearby query point rediscovering the same prune during the Single­
tree search. The intuition behind Dual-tree's advantage can be seen by considering 
two cases . First, if l' is so large that all pairs of points are counted then the Single-Tree 
search will perform O(N) operations, where each query point immediately prunes at 
the root , while Dual-Tree search will perform 0 (1) operations. Second, if l' is so small 
that no pairs of points are counted, Single-Tree search will run to one leaf for each 
query, m eaning total work O(N log N ) whereas Dual-tree search will visit each leaf 
once, meaning O(N) work. Note, however , that in the middle case of a medium-size 
1', Dual-tree is theoretically only a constant-factor superior to Single-tree. 4 

Non-redundant dual-tree search. So far , we have discussed two operations which 
cut short the need to traverse the tree further - exclusion and subsumption. Another 
form of pruning is to eliminate node-node comparisons which have been p erformed 
already in the reverse order. This can be done [11] simply by (virtually) ranking 
the datapoints according to their position in a depth-first traversal of the tree , then 
recording for each node the minimum and maximum ranks of the points it owns, and 
pruning whenever QNODE'S maximum rank is less than DNODE's minimum rank. This 
is useful for all-pairs problems, but becomes essential for all-n-tuples problems. This 
kind of pruning is not practical for Single-tree search. Figure 3 shows the performance 
of a two-point correlation algorithm using all the aforementioned pruning m ethods. 

Multiple radii simultaneously. Most often in practice, the two-point is computed 
for many successive radii so that a curve can be plotted, indicating the clumpiness on 
different scales. Though the m ethod presented so far is fast , it may have to be run 
once for each of, say, 1,000 radii. It is possible to perform a single, faster computation 
for all the radii simultaneously, by taking advantage of the nesting structure of the 
ordered radii , with an algorithm which recursively narrows the radii which still need to 

4We'1l summarize the asymptotic analysis briefly. If the data is uniformly distributed 
in d-dimensional space, the cost of computing the n-point correlation function on a dataset 
with N points using the Dual-tree (n-tree) algorithm is O( NOnd) where and is the dimen­
sionality of the manifold of n-tuples that are just on the border between being matched and 

not-matched, and is and = n' (1 - n~;;-l) where n' = min( n, d) For example, the 2-point 

correlation function in two dimensions is O(N3/2), considerably better than the O(N2) naive 
algorithm. Disappointingly, for 2-point, this performance is asymptotically the same cost as 
Single-tree. For n > 2 our algorithm is better. Furthermore, if we can accept an approximate 

h . (nond)(O nd /(n-O nd) ) h' h ' . d d f N answer, t e cost IS -f- w IC IS In epen ent 0 . 



I Algorithm # Data QuadratIc I Smgle-tree Dual-tree ST Speedup DT Speedup 

twopoint 10,000 132 2.2 1.2 60 110 
twopomt 50,000 3300 est. 11.8 7.0 280 471 
twopoint 150,000 30899 est. 37 20 835 1545 
twopoint 300,000 123599 est. 76 40 1626 3090 

nearest 10,000 139 2.0 1.4 70 99 
nearest 20,000 556 est. 11.6 9.8 48 57 
nearest 50,000 3475 est. 30.6 26.4 114 132 

outliers 10,000 141 2.3 1.2 61 118 
outliers 50,000 3525 est. 12 6.5 294 542 
outliers 150,000 33006 est. 36 21 917 1572 
outliers 300,000 132026 est. 72 44 1834 3001 

Figure 3: Our experiments timed our algorithms on large astronomical datasets of current 
scientific interest , consisting of x-y positions of sky objects from the Sloane Digital Sky 
Survey. All times are given in seconds, and runs were performed on a Pentium III-500 MHz 
Linux workstation. The larger runtimes for the quadratic algorithm were estimated based 
on those for smaller datasets. The dual kd-tree method is about a factor of 2 faster than the 
single kd-tree method, and both are 3 orders of magnitude faster than the quadratic method 
for a medium-sized dataset of 300,000 points. 

I # Data I I 100 I 1000 I Speedup I I # Data I Quadratic I 10 I 10 Speedup 

10 ,000 1.2 1.8 2.4 500 10 ,000 226 1.2 3.0 188 
20 ,000 2.8 6.4 6.6 424 50 ,000 5650 est. 10.4 16.8 543 
50 ,000 7.0 31 31 226 150,000 50850 est. 32 65 1589 
150 ,000 20 133 146 137 300,000 203400 est. 73 151 2786 

Figure 4: (a) Runtimes for multiple 2-point correlation with increasing number of radii, 
and the speedup factored compared to 1,000 separate Dual-tree 2-point correlations. (b) 
Runtimes for kernel density estimation with decreasing levels of approximation, controlled 
by parameter ~, and speedup over quadratic. 

be considered based on the current closest and farthest distances between the nodes. 
The details are omitted for space, regrettably. The results in Figure 4 confirm that 
the algorithm quickly focuses on the radii of relevance: for 150 ,000 data, computing 
1,000 2-point correlations took only 7 times as long as computing one. 

3 Kernel density estimation 

Approximation accelerations. A fourth major type of pruning opportunity is 
approximation. This is often needed in all-point-pairs computations which involve 
computing some real-valued function f(x, y) between every pair of points x and y. 
An example is kernel density estimation with an infinite-tailed kernel such as a Gaus­
sian, in which every training point has some non-zero (though perhaps infinitesimal) 
contribution to the density at each test point. 

For each query point Xq we need to accumulate K Ei w(lxq - Xii) where K is a 
normalizing constant and w is a weighting function (which we will need to assume is 
monotonic). A recursive call of the Dual-tree implementation has the following job: 
for Xq E QNODE compute the contribution to xq's summed weights that are due to 
all points in DNODE. Once again, before doing any real work we use simple rectangle 
geometry to compute the shortest and furthest possible distances between any (xq , Xd) 
pair. This bounds the minimum and maximum possible values of Kw(lxq - xdl). If 
these bounds are tight enough (according to an approximation parameter f) we prune 
by simply distributing the midpoint weight to all the points in QNODE. 



I # Data I Time - - -
1000 1 1 < 1 < 1 < 1 
2000 13 2 < 1 3 23 
10000 1470 3 < 1 6 57 
20000 14441 4 < 1 7 73 

Figure 5: (a) Runtimes for approximate n-point correlation with t = 0.02 and 20,000 data. 
(b) Runtimes for approximate 4-point with t = 0.02 and increasing data size. (c) Runtimes 
for exact n-point, run on 2000 datapoints of galaxies in d-dimensional color space. 

4 The n-point correlation, for n > 2 

The n-point correlation is the generalization of the 2-point correlation, which counts 
the number of n-tuples of points lying within radius 7' of each other , or more generally, 
between some 7'min and 7'max. 5 The implementation is entirely analogous to the 2-
point case , using n trees in general instead of two, except that there is more benefit in 
being careful about which of 2n possible recursive calls to choose in the cases where 
you cannot prune, the approximation versions are harder, there is no immediately 
analogous Single-tree version of the algorithm, and anti-redundancy pruning is much 
more important. Figure 5 shows the unprecedented efficiency gains, which become 
more dramatic as n increases. 

Approximating 'exact' computations. Even for algorithms such as 2-point, that 
return exact counts , bounded approximation is possible. Suppose the true value of the 
2-point function is V* but that we can tolerate a fractional error of f: we'll accept any 

value V such that IV - V*I < fV*. It is possible to adapt the dual-tree algorithm using 
a best-first iterative deepening search strategy to guarantee this result while exploiting 
permission to approximate effectively by building the count as much as possible from 
"easy-win" node pairs while doing approximation at hard deep node-pairs. 

5 Outlier detection, nearest neighbors, and other problems 

One of the main intents of this paper is to point out the broad applicability of this 
type of algorithm within statistical learning. Figure 3 shows performance results for 
our outlier detection and nearest neighbors algorithms. Figure 6 lists many N-body 
problems which are clear candidates for acceleration in future work. 6 

5The n-point correlation is useful for detailed characterizations of mass distributions (in­
cluding galaxies and biomasses). Higher-order n-point correlations detect increasingly subtle 
differences in mass distribution, and are also useful for assessing variance in the lower-order 
n-point statistics. For example, the three-point correlation, which measures the number of 
triplets of points meeting the specified geometric constraints, can distinguish between two 
distributions that have the same 2-point correlations but differ in their degree of "stripiness" 
versus "spottiness" . 

6In our nearest neighbors algorithm we consider the problem of finding, for each query 
point, its single nearest neighbor among the data points. (This is exactly the all-nearest­
neighbors problem of computational geometry.) The methods are easily generalized to the 
case of finding the k nearest neighbors, as in k-NN classification and locally weighted regres­
sion. Outlier detection is one of the most common statistical operations encountered in data 
analysis. The question of which procedure is most correct is an open and active one. We 
present here a natural operation which might be used directly for outlier detection, or within 
another procedure: for each of the points, find the number of other points that are within 
distance r of it - those having zero neighbors within r are defined as outliers. (This is exactly 
the all-range-count problem.) 



Statistical OperatIOn R esults Approximation ? What is N ? 
here? 

2-point function Yes Optional # Data 
n-point function Yes Optional # Data 
Multiple 2-point function Yes Optional # Data 
Batch k-ne arest neighbor Yes Optional # Data 
N on-paramet erlc outlier d et ectIOn I d enOlsmg Yes Optional # Data 
Batch K ernel density / classify / regression Yes Yes # Data 
Batch loc ally weighted regression No Yes # Data 
Batch kernel PCA No Yes # Data 
Gaussian process le arning and prediction No Yes # Data 
K-means No Optional # Data, Clusters 
Mixture of G aussians clustering No Yes # Data, C lusters 
Hidden Markov model No Yes # Data, States 
RBF neural network No Yes # Data, Neurons 
Finding pairs of correlated attributes No Optional # Attributes 
Finding n-tuples of correlated attributes No Optional # Attributes 
D ependency-tree learning No Optional # Attributes 

Figure 6: A very brief sample of applicability of Dual-tree search methods. 
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