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Abstract 

This paper presents a unified probabilistic framework for denoising and 
dereverberation of speech signals. The framework transforms the denois­
ing and dereverberation problems into Bayes-optimal signal estimation. 
The key idea is to use a strong speech model that is pre-trained on a 
large data set of clean speech. Computational efficiency is achieved by 
using variational EM, working in the frequency domain, and employing 
conjugate priors. The framework covers both single and multiple micro­
phones. We apply this approach to noisy reverberant speech signals and 
get results substantially better than standard methods. 

1 Introduction 

This paper presents a statistical-model-based algorithm for reconstructing a speech source 
from microphone signals recorded in a stationary noisy reverberant environment. Speech 
enhancement in a realistic environment is a challenging problem, which remains largely 
unsolved in spite of more than three decades of research. Speech enhancement has many 
applications and is particularly useful for robust speech recognition [7] and for telecommu­
nication. 

The difficulty of speech enhancement depends strongly on environmental conditions. If a 
speaker is close to a microphone, reverberation effects are minimal and traditional methods 
can handle typical moderate noise levels. However, if the speaker is far away from a micro­
phone, there are more severe distortions , including large amounts of noise and noticeable 
reverberation. Denoising and dereverberation of speech in this condition has proven to be 
a very difficult problem [4]. 

Current speech enhancement methods can be placed into two categories: single­
microphone methods and multiple-microphone methods. A large body of literature exists 
on single-microphone speech enhancement methods. These methods often use a proba­
bilistic framework with statistical models of a single speech signal corrupted by Gaussian 
noise [6, 8]. These models have not been extended to dereverberation or multiple micro­
phones. 

Multiple-microphone methods start with microphone array processing, where an array of 
microphones with a known geometry is deployed to make both spatial and temporal mea­
surements of sounds. A microphone array offers significant advantages compared to single 
microphone methods. Non-adaptive algorithms can denoise a signal reasonably well, as 



long as it originates from a limited range of azimuth. These algorithms do not handle re­
verberation, however. Adaptive algorithms can handle reverberation to some extent [4], but 
existing methods are not derived from a principled probabilistic framework and hence may 
be sub-optimal. 

Work on blind source separation has attempted to remove the need for fixed array geome­
tries and pre-specified room models. Blind separation attempts the full multi-source, multi­
microphone case. In practice, the most successful algorithms concentrate on instantaneous 
noise-free mixing with the same number of sources as sensors and with very weak prob­
abilistic models for the source [5]. Some algorithms for noisy non-square instantaneous 
mixing have been developed [1], as well as algorithms for convolutive square noise-free, 
mixing [9]. However, the full problem including noise and convolution has so far remained 
open. 

In this paper, we present a new method for speech denoising and dereverberation. We use 
the framework of probabilistic models, which allows us to integrate the different aspects 
of the whole problem, including strong speech models, environmental noise and reverber­
ation, and microphone arrays. This integration is performed in a principled manner facili­
tating a coherent unified treatment. The framework allows us to produce a Bayes-optimal 
estimation algorithm. Using a strong speech model leads to computational intractability, 
which we overcome using a variational approach. The computational efficiency is further 
enhanced by working in the frequency domain and by employing conjugate priors. The 
resulting algorithm has complexity O(N log N). Results on noisy speech show significant 
improvement over standard methods. 

Due to space limitations, the full derivation and mathematical details for this method are 
provided in the technical report [3]. 

Notation and conventions. We work with time series data using a frame-by-frame analysis 
with N -point frames. Thus, all signals and systems, e.g. Y~' have a time point subscript 
extending over n = 0, ... , N - 1. With the superscript i omitted, Yn denotes all microphone 
signals. When n is also omitted, Y denotes all signals at all time points. Superscripts may 
become subscripts and vice versa when no confusion arises. The discrete Fourier transform 
(DFf) of Xn is Xk = En exp( -iwkn)Xn. We define the primed quantity 

p 

ii~ = 1 - L e-iwknan 

n=l 

for variables an with n = 1, ... ,p. 

(1) 

The Gaussian distribution for a random vector a with mean fl and precision matrix V (de­
fined as the inverse covariance matrix) is denotedN(a I fl, V). The Gamma distribution for 
a non-negative random variable v with a degrees of freedom and inverse scale (3 is denoted 
g(v I a, (3) IX va / 2 - 1 exp( -(3v/2). Their product, the Normal-Gamma distribution 

Ng(a, v I fl, V, a, (3) = N(a I fl, vV)g(v I a, (3) , (2) 

turns out to be particularly useful. Notice that it relates the precision of a to v. 

Problem Formulation We consider the case where a single speech source is present and 
M microphones are available. The treatment of the single-microphone case is a special 
case of M = 1, but is not qualitatively different. 

Let Xn be the signal emitted by the source at time n, and let y~ be the signal received at 
microphone i at the same time. Then 

y~ = h~ * Xn + u~ = L h~xn-m + u~ , (3) 
m 

where h:'" is the impulse response of the filter (of length Ki ~ N) operating on the source 
as it propagates toward microphone i, * is the convolution operator, and u~ denotes the 



noise recorded at that microphone. Noise may originate from both microphone responses 
and from environmental sources. 

In a given environment, the task is to provide an optimal estimate of the clean speech signal 
x from the noisy microphone signals yi. This requires the estimation of the convolving 
filters hi and characteristics of the noise ui . This estimation is accomplished by Bayesian 
inference on probabilistic models for x and u i . 

2 Probabilistic Signal Models 

We now turn to our model for the speech source. Much of the work on speech denoising in 
the past has usually employed very simple source models: AR or ARMA descriptions [6]. 
One exception is [8] , which uses an HMM whose observations are Gaussian AR mod­
els. These simple denoising models incorporate very little information on the structure of 
speech. Such an approach a priori allows any value for the model coefficients, including 
values that are unlikely to occur in a speech signal. Without a strong prior, it is difficult to 
estimate the convolving filters accurately due to identifiability. A source prior is especially 
important in the single microphone case, which estimates N clean samples plus model co­
efficients from N noisy samples. Thus, the absence of a strong speech model degrades 
reconstruction quality. 

The most detailed statistical speech models available are those employed by state-of-the­
art speech recognition engines. These systems are generally based on mixture of diagonal 
Gaussian models in the mel-cepstral domain. These models are endowed with temporal 
Markov dynamics and have a very large (f'.:::l 100000) number of states corresponding to 
individual atoms of speech. However, in the mel-cepstral domain, the noisy reverberant 
speech has a strong non-linear relationship to the clean speech. 

Physical speech production model. In this paper, we work in the linear time/frequency 
domain using a statistical model and take an intermediate approach regarding the model 
size. We model speech production with an AR(P) model: 

p 

Xn = L amXn-m +Vn , 
m=l 

(4) 

where the coefficients am are related to the physical shape of a "lossless tube" model of 
the vocal tract. 

To tum this physical model into a probabilistic model, we assume that Vn are indepen­
dent zero-mean Gaussian variables with scalar precision v. Each speech frame x = 
(xo, ... ,XN-l) has its own parameters (J = (al, ... , ap , v). Given (J, the joint distribution 
of x is generally a zero-mean Gaussian, p(x 1 (J) = N(x 1 0, A), where A is the N x N 
precision matrix. Specifically, the joint distribution is given by the product 

p(x 1 (J) = IT N(xn 1 L amXn-m, v). (5) 
n m 

Probabilistic model in the frequency domain. However, rather than employing this prod­
uct form directly, we work in the frequency domain and use the DFf to write 

N-l 

p(x 1 (J) ()( exp( - 2~ L 1 ii~ 121 Xk 12) , (6) 
k=O 

where ii~ is defined in (1). The precision matrix A is now given by an inverse DFf, Anm = 
(v/N)I:keiWk(n-m) 1 ii~ 12. This matrix belongs to a sub-class of Toeplitz matrices 
called circulant Toeplitz. It follows from (6) that the mean power spectrum of x is related 
to (J via Sk = (I Xk 12) = N/(v 1 ii~ 12). 



Conjugate priors. To complete our speech model, we must specify a distribution over the 
speech production parameters O. We use a S-state mixture model with a Normal-Gamma 
distribution (2) for each component s = 1, ' ''' S: p(O 1 s) = N(al' "" ap 1 /-Ls, vVs)Q(v 1 
O:s, (3s) . This form is chosen by invoking the idea of a conjugate prior, which is defined as 
follows. Given the model p(x 1 O)p( ° 1 s) , the prior p( ° 1 s) is conjugate to p(x 1 0) iff the 
posterior p(O 1 x, s) , computed by Bayes' rule, has the same functional form as the prior. 
This choice has the advantage of being quite general while keeping the clean speech model 
analytically tractable. 

It turns out, as discussed below, that significant computational savings result if we restrict 
the p x p precision matrices Vs to have a circulant Toeplitz structure. To do this without 
having to impose an explicit constraint, we reparametrize p(O 1 s) in terms of ~;, 'f/; instead 
of /-L;, V':m' and work in the frequency domain: 

p-l 

p(O 1 s) ex exp(-~ L: 1 ~kak - iik 12) , v-~ exp(_(3s v) . 
2p k=O 2 

(7) 

Note that we use a p- rather than N -point DFf. The precisions are now given by the inverse 
DFT V':m = (lip) Lk eiWk(n-m) 1 ~k 12 and are manifestly circulant. It is easy to show 
that conjugacy still holds. 

Finally, the mixing fractions are given by p( s) = 7r s . This completes the specification of 
our clean speech modelp(x) in terms of the latent variable modelp(x, 0, s) = p(x 1 O)p(O 1 

s)p(s). The model is parametrized by W = (~~, 'f/~, O:s, (3s, 7rs) . 

Speech model training. We pre-train the speech model parameters W using 10000 sen­
tences of the Wall Street Journal corpus, recorded with a close-talking microphone for 150 
male and female speakers of North American English. We used 16msec overlapping frames 
with N = 256 time points at 16kHz sampling rate. Training was performed using an EM 
algorithm derived specifically for this model [3]. We used S = 256 clusters and p = 12. 
W were initialized by extracting the AR(P) coefficients from each frame using the autocor­
relation method. These coefficents were converted into cepstral coefficients, and clustered 
into S classes by k-means clustering. We then considered the corresponding hard clusters 
of the AR(p) coefficients, and separately fit a model p(O 1 s) (7) to each. The resulting 
parameters were used as initial values for the full EM algorithm. 

Noise model. In this paper, we use an AR(q) description for the noise recorded by micro­
phone i, u~ = Lm b~u~_m + w~. The noise parameters are ¢>i = (b~, Ai), where Ai are 
the precisions of the zero-mean Gaussian excitations w~ . In the frequency domain we have 
the joint distribution 

. N-l 

p(ui 1 ¢i) ex exp( - 2~ L: 1 b~,k 121 u~ 12) , (8) 
k=O 

As in (6), the parameters ¢i determine the spectra of the noise. But unlike the speech 
model, the AR(q) noise model is chosen for mathematical convenience rather than for its 
relation to an underlying physical model. 

Noisy speech model. The form (8) now implies that given the clean speech x, the distribu­
tion of the data yi is 

. N-l 

( i I) (N "" 1 -b' 121 -i h- i - 12) pyx ex exp - 2N L...J i,k Yk - kXk . (9) 
k=O 

This completes the specification of our noisy speech model p(y) in terms of the joint dis­
tribution Oi p(yi 1 x )p( x 1 O)p( ° 1 s )p( s). 



3 Variational Speech Enhancement (VSE) Algorithm 

The denoising and dereverberation task is accomplished by estimating the clean speech x, 
which requires estimating the speech parameters 8, the filter coefficients hi, and the noise 
parameters qi. These tasks can be performed by the EM algorithm. This algorithm receives 
the data yi from an utterance (a long sequence of frames) as input and proceeds iteratively. 
In the E-step, the algorithm computes the sufficient statistics of the clean speech x and 
the production parameters 8 for each frame. In the M-step, the algorithm uses the suffi­
cient statistics to update the values of hi and <pi, which are assumed unchanged throughout 
the utterance. This assumption limits the current VSE algorithm to stationary noise and 
reverberation. Source reconstruction is performed as a by-product of the E-step. 

Intractability and variational EM. In the clean speech model p( x) above, inference (i.e. 
computing p(s, 8 1 x) for the observed clean speech x) is tractable. However, in the 
noisy case, x is hidden and consequently inference becomes intractable. The posterior 
p(s, 8, x 1 y) includes a quartic term exp(x282), originating from the product of two Gaus­
sian variables, which causes the intractability. 

To overcome this problem, we employ a variational approach [10]. We replace the exact 
posterior distribution over the hidden variables by an approximate one, q(s, 8, x 1 y), and 
select the optimal q by maximizing 

F[q] = l:!dXdf) q(s,8,x 1 y)log p?,:,x'IY)) 
s q s, ,x y 

(10) 

w.r.t. q. To achieve tractability, we must restrict the space of possible q. We use the partially 
factorized form 

q = q(s)q(8 1 s)q(x 1 s) , (11) 

where the y-dependence of q is omitted. Given y, this distribution defines a mixture model 
for x and a mixture model for 8, while maintaining correlations between x and 8 (i.e., 
q(x,8) :j:. q(x)q(8). Maximizing F is equivalent to minimizing the KL distance between 
q and the exact conditional p(s, 8, x 1 y) under the restriction (11). 

With no further restriction, the functional form of q falls out of free-form optimization, as 
shown in [2]. For the production parameters, q(8 1 s) turns out to have the form q(8 1 s) = 
N(al, ... , ap 1 {is, vVs)9(v 1 Ct.s, Ss) . This form is functionally identicalto that of the prior 
p( 8 1 s), consistent with the conjugate prior idea. The parameters of q are distinguished 
from the prior's by the A symbol. Similarly, the state responsibilities are q( s) = * s. For 
the clean speech, we obtain Gaussians, q(x 1 s) = N(x 1 Ps, As), with state-dependent 
means and precisions. 

E-step and Wiener filtering. To derive the E-step, we first ignore reverberation by setting 
h~ = In,o and assuming a single microphone signal Yn, thus omitting i. The extension to 
multiple microphones and reverberation is straightforward. 

The parameters of q are estimated at the E-step from the noisy speech in each frame, using 
an iterative algorithm. First, the parameters of q( 8 1 s) are updated via 

Vs = Rs + Vs , {is = Vs-l(rs + VsILs) , (12) 

where R~m = (liN) 2:k eiwk(n-m) Es(1 Xk 1
2 ) , r~ = R~o, and Es denotes averaging 

w.r.t. q(x 1 s), which is easily done analytically. The update rules for Ct.s, Ss, *s are shown 
in [3]. 

Next, the parameters of q(x 1 s) are obtained by inverse DFT via 

(13) 



where J: = A 1 b~ 12 tfJZ, and gZ = A 1 b~ 12 +Es(v 1 ii~ 12). Here Es denotes averaging 
w.r.t. q((} 1 s). These steps are iterated to convergence, upon which the estimated speech 
signal for this frame is given by the weighted sum x = Es 1rsPs. 

We point out that the correspondence between AR parameters and spectra implies the 
Wiener filter form J: = Sz/(SZ + Nk), where Si. is the estimated clean speech spec­
trum associated with state s, and Nk is the noise spectrum, both at frequency Wk. Hence, 
the updated Ps in (13) is obtained via a state-dependent Wiener filter, and the clean speech 
is estimated by a sum of Wiener filters weighted by the state responsibilities. The same 
Wiener structure holds in the presence of reverberation. Notice that, whereas the conven­
tional Wiener filter is linear and obtained directly from the known speech spectrum, our 
filters depend nonlinearly on the data, since the unknown speech spectra and state respon­
sibilities are estimated iteratively by the above algorithm. 

M-step. After computing the sufficient statistics of (), x for each frame, ¢i and hi are 
updated using the whole utterance. The update rules are shown in [3]. Alternatively, the 
¢i can be estimated directly by maximum likelihood if a non-speech portion of the input 
signal can be found . 

Computational savings. The complexity of the updates for q(x 1 s) and q((} 1 s) is 
N log Nand Splogp, respectively. This is due to working in the frequency domain, using 
the FFf algorithm to perform the DFf, and by using conjugate priors and circulant preci­
sions. Working in the time domain and using priors with general precisions would result in 
the considerably higher complexity of N 2 and Sp3, respectively. 

4 Experiments 

Denoising. We tested this algorithm on 150 speech sentences by male and female speakers 
from the Wall Street Journal (WSJ) database, which were not included in the training set. 
These sentences were distorted by adding either synthetic noise (white or pink), or noise 
recorded in an office environment with a PC and air conditioning. The distortions were ap­
plied at different SNRs. All of these noises were stationary. We then applied the algorithm 
to estimate the noise parameters and reconstruct the original speech signal. The result was 
compared with a sophisticated, subband-based implementation of the spectral subtraction 
(SS) technique. 

Denoising & Dereverberation. We tested this algorithm on 100 WSJ sentences, which 
were distorted by convolving them with a lO-tap artificial filter and adding synthetic white 
Gaussian noise at different SNRs. We then applied the algorithm to estimate both the noise 
level and the filter. Here we used a simpler speech model with p( () 1 s) = 8 (() - () s). 

Speech Recognition. We also examined the potential contribution of this algorithm to 
robust speech recognition, by feeding the denoised signals as inputs to a recognition sys­
tem. The system used a version of the Microsoft continuous-density HMM (Whisper), with 
6000 tied HMM states (senones), 20 Gaussians per state, and the speech represented via 
Mel-cepstrum, delta cepstrum, and delta-delta cepstrum. A fixed bigram language model 
is used in all the experiments. The system had been trained on a total of 16,000 female 
clean speech sentences. The test set consisted of 167 female WSJ sentences, which were 
distorted by adding synthetic white non-Gaussian noise. The word error rate was 55 .06% 
under the training-test mismatched condition of no preprocessing on the test set and de­
coding by HMMs trained with clean speech. This condition is the baseline for the relative 
performance improvement listed in the last row of Table 1. For these experiments, we 
compared VSE to the SS algorithm described in [7]. 

Table 1 shows that the Variational Speech Enhancement (VSE) algorithm is superior to SS 
at removing stationary noise either measured via SNR improvement or via relative reduc­
tion in speech recognition error rate (compared to baseline). 



dB noise reverb SS SS VSE VSE 
added added synthetic real synthetic real 

noise noise noise noise 
SNR improvement 5 No 4.3 4.3 6.0 5.5 
SNR improvement 10 No 4.1 4.1 5.8 5.1 
SNR improvement 5 Yes 6.7 10.2 
SNR improvement 10 Yes 8.3 13.2 
Speech recognition 
relative improvement 10 No 38.6% 65.1% 

Table 1: Experimental Results. 

5 Conclusion 

We have presented a probabilistic framework for denoising and dereverberation. The 
framework uses a strong speech model to perform Bayes-optimal signal estimation. The 
parameter estimation and the reconstruction of the signal are performed using a varia­
tional EM algorithm. Working in the frequency domain and using conjugate priors leads to 
great computational savings. The framework applies equally well to one-microphone and 
multiple-microphone cases. Experiments show that the optimal estimation can outperform 
standard methods such as spectral subtraction. Future directions include adding temporal 
dynamics to the speech model via an HMM structure, using a richer adaptive noise model 
(e.g. a mixture), and handling non-stationary noise and filters. 
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