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Abstract 

Prior knowledge about video structure can be used both as a means to 
improve the peiformance of content analysis and to extract features that 
allow semantic classification. We introduce statistical models for two 
important components of this structure, shot duration and activity, and 
demonstrate the usefulness of these models by introducing a Bayesian 
formulation for the shot segmentation problem. The new formulations 
is shown to extend standard thresholding methods in an adaptive and 
intuitive way, leading to improved segmentation accuracy. 

1 Introduction 

Given the recent advances on video coding and streaming technology and the pervasiveness 
of video as a form of communication, there is currently a strong interest in the development 
of techniques for browsing, categorizing, retrieving and automatically summarizing video. 
In this context, two tasks are of particular relevance: the decomposition of a video stream 
into its component units, and the extraction of features for the automatic characterization 
of these units. Unfortunately, current video characterization techniques rely on image 
representations based on low-level visual primitives (such as color, texture, and motion) 
that, while practical and computationally efficient, fail to capture most of the structure 
that is relevant for the perceptual decoding of the video. In result, it is difficult to design 
systems that are truly useful for naive users. Significant progress can only be attained by a 
deeper understanding of the relationship between the message conveyed by the video and 
the patterns of visual structure that it exhibits. 

There are various domains where these relationships have been thoroughly studied, albeit 
not always from a computational standpoint. For example, it is well known by film theorists 
that the message strongly constrains the stylistic elements of the video [1, 6], which are 
usually grouped into two major categories: the elements of montage and the elements of 
mise-en-scene. Montage refers to the temporal structure, namely the aspects of film editing, 
while, mise-en-scene deals with spatial structure, i.e. the composition of each image, and 
includes variables such as the type of set in which the scene develops, the placement of 
the actors, aspects of lighting, focus, camera angles, and so on. Building computational 
models for these stylistic elements can prove useful in two ways: on one hand it will allow 
the extraction of semantic features enabling video characterization and classification much 
closer to that which people use than current descriptors based on texture properties or optical 
flow. On the other hand, it will provide constraints for the low-level analysis algorithms 
required to perform tasks such as video segmentation, keyframing, and so on. 



The first point is illustrated by Figure 1 where we show how a collection of promotional 
trailers for commercially released feature films populates a 2-D feature space based on the 
most elementary characterization of montage and mise-en-scene: average shot duration vs. 
average shot activity t . Despite the coarseness of this characterization, it captures aspects 
that are important for semantic movie classification: close inspection of the genre assigned 
to each movie by the motion picture association of America reveals that in this space the 
movies cluster by genre! 
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Figure 1: Shot activity vs. duration features . The genre of each movie is identified by the symbol 
used to represent the movie in the plot. 

In this paper, we concentrate on the second point, i.e. how the structure exhibited by Figure 1 
can be exploited to improve the performance of low-level processing tasks such as shot 
segmentation. Because knowledge about the video structure is a form of prior knowledge, 
Bayesian procedures provide a natural way to accomplish this goal. We therefore introduce 
computational models for shot duration and activity and develop a Bayesian framework for 
segmentation that is shown to significantly outperform current approaches. 

2 Modeling shot duration 

Because shot boundaries can be seen as arrivals over discrete, non-overlapping temporal 
intervals, a Poisson process seems an appropriate model for shot duration [3]. However, 
events generated by Poisson processes have inter-arrival times characterized by the expo­
nential density which is a monotonically decreasing function of time. This is clearly not 
the case for the shot duration, as can be seen from the histograms of Figure 2. In this work, 
we consider two alternative models, the Erlang and Weibull distributions. 

2.1 The Erlang model 

Letting T be the time since the previous boundary, the Erlang distribution [3] is described 
by 

(1) 

IThe activity features are described in section 3. 



Figure 2: Shot duration histogram, and maximum likelihood fit obtained with the Erlang (left) and 
Weibull (right) distributions. 

It is a generalization of the exponential density, characterized by two parameters: the order 
r, and the expected inter-arrival time (1/ A) of the underlying Poisson process. When r = 1, 
the Erlang distribution becomes the exponential distribution. For larger values of r, it 
characterizes the time between the rth order inter-arrival time of the Poisson process. This 
leads to an intuitive explanation for the use of the Erlang distribution as a model of shot 
duration: for a given order r, the shot is modeled as a sequence of r events which are 
themselves the outcomes of Poisson processes. Such events may reflect properties of the 
shot content, such as "setting the context" through a wide angle view followed by "zooming 
in on the details" when r = 2, or "emotional buildup" followed by "action" and "action 
outcome" when r = 3. Figure 2 presents a shot duration histogram, obtained from the 
training set to be described in section 5, and its maximum likelihood (ML) Erlang fit. 

2.2 The Wei bull model 

While the Erlang model provides a good fit to the empirical density, it is of limited practical 
utility due to the constant arrival rate assumption [5] inherent to the underlying Poisson 
process. Because A is a constant, the expected rate of occurrence of a new shot boundary 
is the same if 10 seconds or 1 hour have elapsed since the occurrence of the previous one. 
An alternative models that does not suffer from this problem is the Weibull distribution [5], 
which generalizes the exponential distribution by considering an expected rate of arrival of 
new events that is a function of time r 

aro<- l 
A(r)=~, 

and of the parameters a and (3; leading to a probability density of the form 

aro<-l [(r) 0<] 
wo< ,j3(r) = ~exp - /3 . (2) 

Figure 2 presents the ML Weibull fit to the shot duration histogram. Once again we obtain 
a good approximation to the empirical density estimate. 

3 Modeling shot activity 

The color histogram distance has been widely used as a measure of (dis)similarity between 
images for the purposes of object recognition [7], content -based retrieval [4], and temporal 
video segmentation [2]. A histogram is first computed for each image in the sequence 
and the distance between successive histograms is used as a measure of local activity. A 
standard metric for video segmentation [2] is the L l norm of the histogram difference, 

B 

V(a, b) = L lai - bil, (3) 
i=l 



where a and b are histograms of successive frames, and B the number of histogram bins. 

Statistical modeling of the histogram distance features requires the identification of the 
various states through which the video may progress. For simplicity, in this work we 
restrict ourselves to a video model composed of two states: "regular frames" (S = 0) 
and "shot transitions" (S = 1). The fundamental principles are however applicable to 
more complex models. As illustrated by Figure 3, for "regular frames" the distribution is 
asymmetric about the mean, always positive and concentrated near zero. This suggests that 
a mixture of Erlang distributions is an appropriate model for this state, a suggestion that is 
confirmed by the fit to the empirical density obtained with EM, also depicted in the figure. 
On the other hand, for "shot transitions" the fit obtained with a simple Gaussian model is 
sufficient to achieve a reasonable approximation to the empirical density. In both cases, a 
uniform mixture component is introduced to account for the tails of the distributions. 

Figure 3: Left: Conditional activity histogram for regular frames, and best fit by a mixture with 
three Erlang and a uniform component. Right: Conditional activity histogram for shot transitions, 
and best fit by a mixture with a Gaussian and a uniform component. 

4 A Bayesian framework for shot segmentation 

Because shot segmentation is a pre-requisite for virtually any task involving the understand­
ing, parsing, indexing, characterization, or categorization of video, the grouping of video 
frames into shots has been an active topic of research in the area of multimedia signal pro­
cessing. Extensive evaluation of various approaches has shown that simple thresholding of 
histogram distances performs surprisingly well and is difficult to beat [2]. In this work, we 
consider an alternative formulation that regards the problem as one of statistical inference 
between two hypothesis: 

• No : no shot boundary occurs between the two frames under analysis (S = 0), 

• Jit: a shot boundary occurs between the two frames (S = 1), 

for which the optimal decision is provided by a likelihood ratio test where Nt is chosen if 

P(VIS = 1) 
C = log P(VIS = 0) > 0, (4) 

and No is chosen otherwise. It is well known that standard thresholding is a particular case 
of this formulation, in which both conditional densities are assumed to be Gaussians with 
the same covariance. From the discussion in the previous section, it is clear that this does 
not hold for real video. One further limitation of the thresholding model is that it does not 
take into account the fact that the likelihood of a new shot transition is dependent on how 
much time has elapsed since the previous one. On the other hand, the statistical formulation 
can easily incorporate the shot duration models developed in section 2. 



4.1 Notation 

Because video is a discrete process, characterized by a given frame rate, shot boundaries 
are not instantaneous, but last for one frame period. To account for this, states are defined 
over time intervals, i.e. instead of St = 0 or St = 1, we have St ,tH; = 0 or St,t+6 = 1, 
where t is the start of a time interval, and 8 its duration. We designate the features observed 
during the interval [t, t + <5] by Vt,tH' 

To simplify the notation, we reserve t for the temporal instant at which the last shot 
boundary has occurred and make all temporal indexes relative to this instant. I.e. instead of 
St+r,t+r+6 we write Sr,r+6, or simply S6 if T = O. Furthermore, we reserve the symbol 
8 for the duration of the interval between successive frames (inverse of the frame rate), 
and use the same notation for a simple frame interval and a vector of frame intervals (the 
temporal indexes being themselves enough to avoid ambiguity). I.e., while Sr,rH = 0 
indicates that no shot boundary is present in the interval [t + T, t + T + 8], SrH = ° 
indicates that no shot boundary has occurred in any of the frames between t and t + T + 8. 
Similarly, VrH represents the vector of observations in [t, t + T + 8]. 

4.2 Bayesian formulation 

Given that there is a shot boundary at time t and no boundaries occur in the interval [t, t + T], 
the posterior probability that the next shot change happens during the interval [t + T, t +T+ 8] 
is, using Bayes rule, 

P(Sr,rH = 11Sr = 0, VrH) = 'YP(VrHISr = O,Sr,rH = l)P(Sr,rH = 11Sr = 0), 
where'Y is a normalizing constant. Similarly, the probability of no change in [t + T, t + T + 8] 
is 

P(Sr,rH = OISr = 0, VrH) = 'YP(VrHISrH = O)P(Sr,rH = OISr = 0), 
and the posterior odds ratio between the two hypothesis is 

P(Sr,rH = 11Sr = 0, VrH) P(Vr,rHISr,rH = 1) P(Sr,rH = 11Sr = 0) 
= 

P(Sr,rH = OISr = 0, VrH) P(Vr,rHISr,rH = 0) P(Sr,rH = OISr = 0) 

= P(Vr,rHISr,rH = 1) P(Sr,rH = I,Sr = 0\,5) 
P(Vr,rHISr,rH = 0) P(SrH = 0) 

where we have assumed that, given Sr,rH, Vr,rH is independent of all other V and S. 
In this expression, while the first term on the right hand side is the ratio of the conditional 
likelihoods of activity given the state sequence, the second term is simply the ratio of 
probabilities that there may (or not) be a shot transition T units of time after the previous 
one. Hence, the shot duration density becomes a prior for the segmentation process. This 
is intuitive since knowledge about the shot duration is a form of prior knowledge about the 
structure of the video that should be used to favor segmentations that are more plausible. 

Assuming further that V is stationary, defining Llr = [t + T, t + T + <5], considering the 
probability density function p( T) for the time elapsed until the first scene change after t, 
and taking logarithms, leads to a log posterior odds ratio Cp08t of the form 

P(V~TIS~T = 1) J: H p(a)da 
Cp08t = log P(V IS = 0) + log Joo ()d . (6) 

~T ~T r+6 P a a 

The optimal answer to the question if a shot change occurs or not in [t + T, t + T + 8] is 
thus to declare that a boundary exists if 

P(V,dS~T = 1) > 10 Jr':6 P(a)da = 7(T) 
log P(V~T IS~T = 0) - g J: H p(a)da ' 

(7) 



and that there is no boundary otherwise. Comparing this with (4), it is clear that the inclusion 
of the shot duration prior transforms the fixed thresholding approach into an adaptive one, 
where the threshold depends on how much time has elapsed since the previous shot boundary. 

4.2.1 The Erlang model 

It can be shown that, under the Erlang assumption, 

(8) 

and the threshold of (7) becomes 

"( ) -1 L~-l £i,.x(T + 8) 
" T - og r . 

Li=lh,.x(T) - £i ,.x(T + 8)] 
(9) 

Its variation over time is presented in Figure 4. While in the initial segment of the shot, the 
threshold is large and shot changes are unlikely to be accepted, the threshold decreases as 
the scene progresses increasing the likelihood that shot boundaries will be declared. 

. - - - - - - - - .­,, ~ ... 

Figure 4: Temporal evolution of the Bayesian threshold for the Erlang (left) and Weibull (center) 
priors. Right: Total number of errors for all thresholds. 

Even though, qualitatively, this is behavior that what one would desire, a closer observation 
of the figure reveals the major limitation of the Erlang prior: its steady-state behavior. 
Ideally, in addition to decreasing monotonically over time, the threshold should not be 
lower bounded by a positive value as this may lead to situations in which its steady-state 
value is high enough to miss several consecutive shot boundaries. This limitation is a 
consequence of the constant arrival rate assumption discussed in section 2 and can be 
avoided by relying instead on the Weibull prior. 

4.2.2 The Weibull model 

It can be shown that, under the Wei bull assumption, 

(10) 

from which 

Tw ( T) = - log { exp [( T + 8J: - TCX
] - 1 } . (11) 

As illustrated by Figure 4, unlike the threshold associated with the Erlang prior, Tw(T) 
tends to -00 when T grows without bound. This guarantees that a new shot boundary will 
always be found if one waits long enough. In summary, both the Erlang and the Weibull 
prior lead to adaptive thresholds that are more intuitive than the fixed threshold commonly 
employed for shot segmentation. 



5 Segmentation Results 

The performance of Bayesian shot segmentation was evaluated on a database containing the 
promotional trailers of Figure 1. Each trailer consists of 2 to 5 minutes of video and the total 
number of shots in the database is 1959. In all experiments, performance was evaluated by 
the leave-one-out method. Ground truth was obtained by manual segmentation of all the 
trailers. 

We evaluated the performance of Bayesian models with Erlang, Weibull and Poisson shot 
duration priors and compared them against the best possible performance achievable with a 
fixed threshold. For the latter, the optimal threshold was obtained by brute-force, i.e. testing 
several values and selecting the one that performed best. Error rates for all priors are shown 
in Figure 4 where it is visible that, while the Poisson prior leads to worse accuracy than the 
static threshold, both the Erlang and the Weibull priors lead to significant improvements. 
The Weibull prior achieves the overall best performance decreasing the error rate of the 
static threshold by 20%. 

The reasons for the improved performance of Bayesian segmentation are illustrated by 
Figure 5, which presents the evolution of the thresholding process for a segment from one 
of the trailers in the database ("blankman"). Two thresholding approaches are depicted: 
Bayesian with the Weibull prior, and standard fixed thresholding. The adaptive behavior of 
the Bayesian threshold significantly increases the robustness against spurious peaks of the 
activity metric originated by events such as very fast motion, explosions, camera flashes, 
etc. 

Figure 5: An example of the thresholding process. Top: Bayesian. The likelihood ratio and the 
Weibull threshold are shown. Bottom: Fixed. Histogram distances and optimal threshold (determined 
by leave-one-out using the remainder of the database) are presented. Errors are indicated by circles. 
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