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Abstract 

We consider the problem of designing a linear transformation () E lRPx n, 

of rank p ~ n, which projects the features of a classifier x E lRn onto 
y = ()x E lRP such as to achieve minimum Bayes error (or probabil­
ity of misclassification). Two avenues will be explored: the first is to 
maximize the ()-average divergence between the class densities and the 
second is to minimize the union Bhattacharyya bound in the range of (). 
While both approaches yield similar performance in practice, they out­
perform standard LDA features and show a 10% relative improvement 
in the word error rate over state-of-the-art cepstral features on a large 
vocabulary telephony speech recognition task. 

1 Introduction 

Modern speech recognition systems use cepstral features characterizing the short-term 
spectrum of the speech signal for classifying frames into phonetic classes. These features 
are augmented with dynamic information from the adjacent frames to capture transient 
spectral events in the signal. What is commonly referred to as MFCC+~ + ~~ features 
consist in "static" mel-frequency cepstral coefficients (usually 13) plus their first and sec­
ond order derivatives computed over a sliding window of typicaJly 9 consecutive frames 
yielding 39-dimensional feature vectors every IOms. One major drawback of this front-end 
scheme is that the same computation is performed regardless of the application, channel 
conditions, speaker variability, etc. In recent years, an alternative feature extraction pro­
cedure based on discriminant techniques has emerged: the consecutive cepstral frames 
are spliced together forming a supervector which is then projected down to a manageable 
dimension. One of the most popular objective functions for designing the feature space 
projection is linear discriminant analysis. 

LDA [2, 3] is a standard technique in statistical pattern classification for dimensionality 
reduction with a minimal loss in discrimination. Its application to speech recognition has 
shown consistent gains for small vocabulary tasks and mixed results for large vocabulary 
applications [4,6]. Recently, there has been an interest in extending LDA to heteroscedastic 
discriminant analysis (HDA) by incorporating the individual class covariances in the ob­
jective function [6, 8]. Indeed, the equal class covariance assumption made by LDA does 



not always hold true in practice making the LDA solution highly suboptimal for specific 
cases [8]. 

However, since both LDA and HDA are heuristics, they do not guarantee an optimal pro­
jection in the sense of a minimum Bayes classification error. The aim of this paper is to 
study feature space projections according to objective functions which are more intimately 
linked to the probability of misclassification. More specifically, we will define the proba­
bility of misclassification in the original space, E, and in the projected space, E(J, and give 
conditions under which E(J = Eo Since after a projection y = Ox discrimination infor­
mation is usually lost, the Bayes error in the projected space will always increase, that is 
E(J ~ E therefore minimizing E(J amounts to finding 0 for which the equality case holds. An 
alternative approach is to define an upper bound on E(J and to directly minimize this bound. 

The paper is organized as follows: in section 2 we recall the definition of the Bayes error 
rate and its link to the divergence and the Bhattacharyya bound, section 3 deals with the 
experiments and results and section 4 provides a final discussion. 

2 Bayes error, divergence and Bhattacharyya bound 

2.1 Bayes error 

Consider the general problem of classifying an n-dimensional vector x into one of C dis­
tinct classes. Let each class i be characterized by its own prior Ai and probability density 
function Pi, i = 1, ... ,C. Suppose x is classified as belonging to class j through the Bayes 
assignment j = argmax1 <i<C AiPi (x). The expected error rate for this classifier is called 
Bayes error [3] or probability of misclassification and is defined as 

(1) 

Suppose next that we wish to perform the linear transformation f : R n -t RP, y = 
f(x) = Ox, with 0 a P x n matrix of rank P :::; n. Moreover, let us denote by p~ the 
transformed density for class i. The Bayes error in the range of 0 now becomes 

(2) 

Since the transformation y = Ox produces a vector whose coefficients are linear combi­
nations of the input vector x, it can be shown [1] that, in general, information is lost and 
E(J ~ E. 

For a fixed p, the feature selection problem can be stated as finding fj such that 

fj = argmin E(J (3) 
(JERPxn, rank((J)=p 

We will take however an indirect approach to (3): by maximizing the average pairwise 
divergence and relating it to E(J (subsection 2.2) and by minimizing the union Bhattacharyya 
bound on E(J (subsection 2.3). 



2.2 Interclass divergence 

Since Kullback [5], the symmetric divergence between class i and j is given by 

..!. Pi(X) Pj(x) 
D(~,J) = pi(x)log-(-) +pj(x)log-(-)dx 

Rn Pj X Pi X 
(4) 

D(i, j) represents a measure of the degree of difficulty of discriminating between the 
classes (the larger the divergence, the greater the separability between the classes). 
Similarly, one can define Do(i,j), the pairwise divergence in the range of (). Kull­
back [5] showed that Do(i,j) :::; D(i,j). If the equality case holds, () is called a suf­
ficient statistic for discrimination. The average pairwise divergence is defined as D = 
C(J-1) L1:<:;i<j:<:;C D(i,j) and respectively Do = C(J-1) L1:<:;i<j:<:;C Do(i,j) . It fol­
lows that Do :::; D. The next theorem due to Decell [1] provides a link between Bayes 
error and divergence for classes with uniform priors A1 = ... = AC (= b). 
Theorem [Decell'72] If Do = D then EO = E. 

The main idea of the proof is to show that if the divergences are the same then the Bayes 
assignment is preserved because the likelihood ratios are preserved almost everywhere: 

P; ((x)) = pl ((OOx)) ' i :j:. j. The result follows by noting that for any measurable set A c R P 
P3 X P j X 

! pf(y)dy = r Pi (x)dx 
A iO - l(A) 

(5) 

where ()-1 (A) = {x E Rnl()x E A}. The previous theorem provides a basis for selecting 
() such as to maximize Do. 

Let us make next the assumption that each class i is normally distributed with mean /-Li and 
covariance ~i, that is Pi (x) = N(x; /-Li, ~i) andpf (y) = N(y; ()/-Li, ()~i()T), i = 1, ... , c. 
It is straightforward to show that in this case the divergence is given by 

1 
D(i,j) = 2" trace{~i1[~j + (/-Li - /-Lj)(/-Li - /-Lj)T] +~j1[~i+ (/-Li - /-Lj)(/-Li - /-Lj)T]}-n 

Thus, the objective function to be maximized becomes 

C 

1 '"' T -1 T Do = C(C -1) trace{~(()~i()) ()Si()} - P 

where Si = L ~j + (/-Li - /-Lj)(/-Li - /-Ljf, i = 1, ... , C. 
#i 

(6) 

(7) 

Following matrix differentiation results from [9], the gradient of Do with respect to () has 
the expression 



Unfortunately, it turns out that 8f// = a has no analytical solutions for the stationary points. 
Instead, one has to use numerical optimization routines for the maximization of D(). 

2.3 Bhattacharyya bound 

An alternative way of minimizing the Bayes error is to minimize an upper bound on this 
quantity. We will first prove the following statement 

(9) 

Indeed, from (1), the Bayes error can be rewritten as 

(10) 

and for every x, there exists a permutation of the indices U x : {l, ... , C} -+ 
{l, ... , C} such that the terms A1P1 (x), ... , ACPC (x) are sorted in increasing order, i.e. 
Aux (1)Pux (1) (x) S ... S Aux(C)Pux(C)(x) . Moreover, for 1 S k S C - 1 

from which follows that 

C-1 C-1 

l~~cLAjPj(X) = L Aux (k)Pu x (k) (x) s L AUx(k)Pux(k) (X)Aux (k+1)Pux (k+1) (x) 
- - j#i k=l k=l 

< L VAiPi (X)Ajpj (x) 
l::;i<j::;C 

(12) 

which, when integrated over :R n, leads to (9). 

As previously, if we assume that the Pi'S are normal distributions with means JLi and co­
variances ~i, the bound given by the right-hand side of (9) has the closed form expression 

L VAiAje-P(i,j) (13) 

19<j::;C 

where 

(14) 



is called the Bhattacharyya distance between the normal distributions Pi and Pj [3]. Simi­
larly, one can define Po (i, j), the Bhattacharyya distance between the projected densities pf 
and p~. Combining (9) and (13), one obtains the following inequality involving the Bayes 
error rate in the projected space 

EO ~ L ..jAiAje- P9 (i ,j) (= Bo) 
15,i<j5,C 

It is necessary at this point to introduce the following simplifying notations: 

• Bij = ~ (JLi - JLj )(JLi - JLj) T and 

• Wij = ~(~i + ~j), 1 ~ i < j ~ c. 

From (14), it follows that 

(15) 

po(i,j) = -21 trace{(OWijOT)-lOBijOT} + -21 log IOWijOTI (16) 
..jIO~iOTIIO~jOTI 

and the gradient of Bo with respect to 0 is 

aBo 
aO = 

with, again by making use of differentiation results from [9] 

(17) 

apo(i,j) 
aO 

1 = "2 (OWijOT)-l[OBijOT(OWijOT)-lOWij - OBij ] + (OWijOT)-lOWij-

-~[(O~iOT)-lO~i + (O~jOT)-lO~j] 
(18) 

3 Experiments and results 

The speech recognition experiments were conducted on a voicemail transcription task [7]. 
The baseline system has 2.3K context dependent HMM states and 134K diagonal gaus­
sian mixture components and was trained on approximately 70 hours of data. The test 
set consists of 86 messages (approximately 7000 words). The baseline system uses 39-
dimensional frames (13 cepstral coefficients plus deltas and double deltas computed from 
9 consecutive frames). For the divergence and Bhattacharyya projections, every 9 con­
secutive 24-dimensional cepstral vectors were spliced together forming 216-dimensional 
feature vectors which were then clustered to estimate 1 full covariance gaussian density for 
each state. Subsequently, a 39x216 transformation 0 was computed using the objective 
functions for the divergence (7) and the Bhattacharyya bound (15), which projected the 
models and feature space down to 39 dimensions. As mentioned in [4], it is not clear what 
the most appropriate class definition for the projections should be. The best results were 
obtained by considering each individual HMM state as a separate class, with the priors of 
the gaussians summing up to one across states. Both optimizations were initialized with 



the LDA matrix and carried out using a conjugate gradient descent routine with user sup­
plied analytic gradient from the NAG1 Fortran library. The routine performs an iterative 
update of the inverse of the hessian of the objective function by accumulating curvature 
information during the optimization. 

Figure 1 shows the evolution of the objective functions for the divergence and the Bhat­
tacharyya bound. 
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Figure 1: Evolution of the objective functions. 

The parameters of the baseline system (with 134K gaussians) were then re-estimated in the 
transformed spaces using the EM algorithm. Table 1 summarizes the improvements in the 
word error rates for the different systems. 

INumerical Algebra Group 



System Word error rate 
Baseline (MFCC+~ + ~~) 39.61 % 
LDA 37.39% 
Interclass divergence 36.32% 
Bhattacharyya bound 35.73% 

Table 1: Word error rates for the different systems. 

4 Summary 

Two methods for performing discriminant feature space projections have been presented. 
Unlike LDA, they both aim to minimize the probability of misclassification in the projected 
space by either maximizing the interclass divergence and relating it to the Bayes error or 
by directly minimizing an upper bound on the classification error. Both methods lead to 
defining smooth objective functions which have as argument projection matrices and which 
can be numerically optimized. Experimental results on large vocabulary continuous speech 
recognition over the telephone show the superiority of the resulting features over their LDA 
or cepstral counterparts. 
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