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Abstract 

One way to approximate inference in richly-connected graphical 
models is to apply the sum-product algorithm (a.k.a. probabil­
ity propagation algorithm), while ignoring the fact that the graph 
has cycles. The sum-product algorithm can be directly applied in 
Gaussian networks and in graphs for coding, but for many condi­
tional probability functions - including the sigmoid function - di­
rect application of the sum-product algorithm is not possible. We 
introduce "accumulator networks" that have low local complexity 
(but exponential global complexity) so the sum-product algorithm 
can be directly applied. In an accumulator network, the probability 
of a child given its parents is computed by accumulating the inputs 
from the parents in a Markov chain or more generally a tree. After 
giving expressions for inference and learning in accumulator net­
works, we give results on the "bars problem" and on the problem 
of extracting translated, overlapping faces from an image. 

1 Introduction 
Graphical probability models with hidden variables are capable of representing com­
plex dependencies between variables, filling in missing data and making Bayes­
optimal decisions using probabilistic inferences (Hinton and Sejnowski 1986; Pearl 
1988; Neal 1992). Large, richly-connected networks with many cycles can poten­
tially be used to model complex sources of data, such as audio signals, images and 
video. However, when the number of cycles in the network is large (more precisely, 
when the cut set size is exponential), exact inference becomes intractable. Also, to 
learn a probability model with hidden variables, we need to fill in the missing data 
using probabilistic inference, so learning also becomes intractable. 

To cope with the intractability of exact inference, a variety of approximate inference 
methods have been invented, including Monte Carlo (Hinton and Sejnowski 1986; 
Neal 1992), Helmholz machines (Dayan et al. 1995; Hinton et al. 1995), and 
variational techniques (Jordan et al. 1998). 

Recently, the sum-product algorithm (a.k.a. probability propagation, belief prop­
agation) (Pearl 1988) became a major contender when it was shown to produce 
astounding performance on the problem of error-correcting decoding in graphs with 
over 1,000,000 variables and cut set sizes exceeding 2100,000 (Frey and Kschischang 
1996; Frey and MacKay 1998; McEliece et al. 1998). 

The sum-product algorithm passes messages in both directions along the edges in a 
graphical model and fuses these messages at each vertex to compute an estimate of 
P(variablelobs), where obs is the assignment of the observed variables. In a directed 
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Figure 1: The sum-product algorithm passes messages in both directions along each edge in a 
Bayesian network. Each message is a function of the parent. (a) Incoming messages are fused 
to compute an estimate of P(ylobservations). (b) Messages are combined to produce an 
outgoing message 7rk(Y). (c) Messages are combined to produce an outgoing message >'j(Xj). 
Initially, all messages are set to 1. Observations are accounted for as described in the text. 

graphical model (Bayesian belief network) the message on an edge is a function of 
the parent of the edge. The messages are initialized to 1 and then the variables are 
processed in some order or in parallel. Each variable fuses incoming messages and 
produces outgoing messages, accounting for observations as described below. 

If Xl, ... , X J are the parents of a variable y and Zl, ... , Z K are the children of y, 
messages are fused at y to produce function F(y) as follows (see Fig. Ia): 

F(y) = (IT Ak(y)) (L: ... L: P(yIXI, . . . , xJ) IT 7I"j (Xj)) Rj P(y, obs), (1) 
k X l X J j 

where P(y lXI, ... , xJ) is the conditional probability function associated with y. If 
the graph is a tree and if messages are propagated from every variable in the network 
to y, as described below, the estimate is exact: F(y) = P(y, obs). Also, normalizing 
F(y) gives P(ylobs). If the graph has cycles, this inference is approximate. 

The message 7rk(Y) passed from y to Zk is computed as follows (see Fig. Ib): 

7I"k(Y) = F(y)/Ak(Y). (2) 
The message Aj(Xj) passed from y to Xj is computed as follows (see Fig. Ic): 

Aj(Xj) = L:L: ... L: L: ... L:(IT Ak(y))P(ylxl, ... ,XJ)(IT 7I"i(Xi)). (3) 
y X l X; - l Xj+1 XJ k i#j 

Notice that Xj is not summed over and is excluded from the product of the 7r­

messages on the right. 

If y is observed to have the value y*, 
messages are modified as follows: 

the fused result at y and the outgoing 71" 

F {F(Y) if Y = y* 
(y) f- 0 otherwise 

{ 7I"k(Y) if Y = y* 
, 7I"k (y) f- 0 otherwise (4) 

The outgoing A messages are computed as follows: 

Aj(Xj) = L: ... L: L: ... L:(IT Ak(Y*))P(y = Y*IXI' . . . ,XJ)(IT 7I"i(Xi)). (5) 
Xl X; - l X;+l XJ k i#j 

If the graph is a tree, these formulas can be derived quite easily using the fact that 
summations distribute over products. If the graph is not a tree, a local independence 
assumption can be made to justify these formulas. In any case, the algorithm 
computes products and summations locally in the graph, so it is often called the 
"sum-product" algorithm. 
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Figure 2: The local complexity of a richly connected directed graphical model such as the one 
in (a) can be simplified by assuming that the effects of a child's parents are accumulated by a 
low-complexity Markov chain as shown in (b) . (c) The general structure of the "accumulator 
network" considered in this paper. 

2 Accumulator networks 
The complexity of the local computations at a variable generally scales exponen­
tially with the number of parents of the variable. For example, fusion (1) re­
quires summing over all configurations of the parents. However, for certain types 
of conditional probability function P(yIXI,' .. ,xJ), this exponential sum reduces 
to a linear-time computation. For example, if P(yIXI,' .. ,xJ) is an indicator func­
tion for y = Xl XOR X2 XOR ... XOR XJ (a common function for error-correcting 
coding), the summation can be computed in linear time using a trellis (Frey and 
MacKay 1998). If the variables are real-valued and P(y lXI, ... ,xJ) is Gaussian 
with mean given by a linear function of Xl, ... ,X J, the integration can be com­
puted using linear algebra (c.f. Weiss and Freeman 2000; Frey 2000). 

In contrast, exact local computation for the sigmoid function, P(y lXI, ... ,XJ) = 
1/(1 + exp[-Bo - L:j BjXj]) , requires the full exponential sum. Barber (2000) con­
siders approximating this sum using a central limit theorem approximation. 

In an "accumulator network" , the probability of a child given its parents is computed 
by accumulating the inputs from the parents in a Markov chain or more generally 
a tree. (For simplicity, we use Markov chains in this paper.) Fig. 2a and b show 
how a layered Bayesian network can be redrawn as an accumulator network. Each 
accumulation variable (state variable in the accumulation chain) has just 2 parents, 
and the number of computations needed for the sum-product computations for 
each variable in the original network now scales with the number of parents and the 
maximum state size of the accumulation chain in the accumulator network. 

Fig. 2c shows the general form of accumulator network considered in this paper, 
which corresponds to a fully connected Bayes net on variables Xl, ... ,X N. In this 
network, the variables are Xl, ... ,X N and the accumulation variables for Xi are 
Si,l, ... ,Si,i-l' The effect of variable Xj on child Xi is accumulated by Si,j' The 
joint distribution over the variables X = {Xi: i = 1, ... ,N} and the accumulation 
variables S = {Si,j : i = 1, ... ,N,j = 1, ... ,i -1} is 

N i-I 

P(X, S) = II [(II P(Si,j IXj, Si,j-l)) P(xilsi,i-d]. (6) 
i=l j=l 

If Xj is not a parent of Xi in the original network, we set P(si,jlxj,Si,j-t) = 1 if 
Si,j = Si,j-l and P(Si,j IXj, Si,j-l) = 0 if Si,j :I Si,j-l' 

A well-known example of an accumulator network is the noisy-OR network (Pearl 



1988; Neal 1992). In this case, all variables are binary and we set 

if Si,j-l = 1, 
if Xj = 1 and Si,j-l = 0, 
otherwise, 

where Pi,j is the probability that Xj = 1 turns on the OR-chain. 

(7) 

Using an accumulation chain whose state space size equals the number of configu­
rations of the parent variables, we can produce an accumulator network that can 
model the same joint distributions on Xl, ... , XN as any Bayesian network. 

Inference in an accumulator network is performed by passing messages as described 
above, either in parallel, at random, or in a regular fashion, such as up the accumu­
lation chains, left to the variables, right to the accumulation chains and down the 
accumulation chains, iteratively. 

Later, we give results for an accumulator network that extracts images of trans­
lated, overlapping faces from an visual scene. The accumulation variables represent 
intensities of light rays at different depths in a layered 3-D scene. 

2.1 Learning accuIIlulator networks 

To learn the conditional probability functions in an accumulator network, we ap­
ply the sum-product algorithm for each training case to compute sufficient statis­
tics. Following Russell and Norvig (1995), the sufficient statistic needed to up­
date the conditional probability function P(si,jlxj,Si,j-t) for Si,j in Fig. 2c is 
P(Si,j, Xj, Si,j_llobs). In particular, 

8 log P(obs) _ P(Si,j, Xj, Si,j-llobs) 

8P(Si,j IXj, Si,j-l) P(Si,j IXj, Si,j-l) 
(8) 

P(Si,j,Xj,Si,j-llobs) is approximated by normalizing the product of 
P(Si,j IXj, Si,j-l) and the). and 11'" messages arriving at Si,j. (This approxi­
mation is exact if the graph is a tree.) 

The sufficient statistics can be used for online learning or batch learning. If batch 
learning is used, the sufficient statistics are averaged over the training set and 
then the conditional probability functions are modified. In fact, the conditional 
probability function P(si,jlxj,Si,j-l) can be set equal to the normalized form of 
the average sufficient statistic, in which case learning performs approximate EM, 
where the E-step is approximated by the sum-product algorithm. 

3 The bars problem 

Fig. 3a shows the network structure for the binary bars problem and Fig. 3b shows 
30 training examples. For an N x N binary image, the network has 3 layers of 
binary variables: 1 top-layer variable (meant to select orientation); 2N middle­
layer variables (mean to select bars); and N 2 bottom-layer image variables. For 
large N, performing exact inference is computationally intractable and hence the 
need for approximate inference. 

Accumulator networks enable efficient inference using probability propagation since 
local computations are made feasible. The topology of the accumulator network 
can be easily tailored to the bars problem, as described above. 

Given an accumulator network with the proper conditional probability tables, 
inference computes the probability of each bar and the probability of vertical 
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Figure 3: (a) Bayesian network for bars problem. (b) Examples of typical images. (c) KL 
divergence between approximate inference and exact inference after each iteration 

versus horizontal orientation for an input image. After each iteration of prob­
ability propagation, messages are fused to produce estimates of these proba­
bilities. Fig. 3c shows the Kullback Leibler divergence between these approx­
imate probabilities and the exact probabilities after each iteration, for 5 in­
put images. The figure also shows the most probable configuration found by 
approximate inference. In most cases, we found that probability propagation 
correctly infers the presence of appropriate 
bars and the overall orientation of the bars. 
In cases of multiple interpretations of the im­
age (e.g., Fig. 3c, image 4), probability prop­
agation tended to find appropriate interpre­
tations, although the divergence between the 
approximate and exact inferences is larger. 

Starting with an accumulator network with 
random parameters, we trained the network 
as described above. Fig. 4 shows the online 
learning curves corresponding to different 
learning rates. The log-likelihood oscillates 
and although the optimum (horizontal line) 
is not reached, the results are encouraging. 
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Figure 4: Learning curves for learn­
ing rates .05, .075 and .1 

4 Accumulating light rays for layered vision 

We give results on an accumulator network that extracts image components from 
scenes constructed from different types of overlapping face at random positions. 
Suppose we divide up a 3-D scene into L layers and assume that one of 0 objects 
can sit in each layer in one of P positions. The total number of object-position 
combinations per layer is K = 0 x P. For notational convenience, we assume 
that each object-position pair is a different object modeled by an opaqueness map 
(probability that each pixel is opaque) and an appearance map (intensity of each 
pixel). We constrain the opaqueness and appearance maps of the same object in 
different positions to be the same, up to translation. Fig. 5a shows the appearance 
maps of 4 such objects (the first one is a wall). 

In our model, Pkn is the probability that the nth pixel of object k is opaque and 
Wkn is the intensity of the nth pixel for object k. The input images are modeled 
by randomly picking an object in each of L layers, choosing whether each pixel in 
each layer is transparent or opaque, and accumulating light intensity by imaging 
the pixels through the layers, and then adding Gaussian noise. 

Fig. 6 shows the accumulator network for this model. zl E {I, .. . ,K} is the index 
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Figure 5: (a) Learned appearance maps for a wall (all pixels dark and nearly opaque) and 3 
faces. (b) An image produced by combining the maps in (a) and adding noise. (c) Object­
specific segmentation maps. The brightness of a pixel in the kth picture corresponds to the 
probability that the pixel is imaged by object k. 

of the object in the lth layer, where layer 1 is adjacent to the camera and layer Lis 
farthest from the camera. y~ is the accumulated discrete intensity of the light ray 
for pixel n at layer l. y~ depends on the identity of the object in the current layer 
zl and the intensity of pixel n in the previous layer y~+1. So, 

1 
1 

Zl = 0, y~ = y~+1 
zl > 0, y~ = W zl n = y~+l 
zl > 0 yl = W ...J. yl+l 'n z ln -r n 
zl > 0 yl = yl+l ...J. W 'n n -;- zln 

otherwise. 

(9) 

Each condition corresponds to a different imaging operation at layer l for the light 
ray corresponding to pixel n. Xn is the discretized intensity of pixel n, obtained 
from the light ray arriving at the camera, y~. P(xnly~) adds Gaussian noise to y~. 

After training the network on 200 labeled images, zL 

we applied iterative inference to identify and 10- ~'::::::::===:::::::::---
cate image components. After each iteration, the 
message passed from y~ to zl is an estimate of the 
probability that the light ray for pixel n is imaged 
by object zl at layer l (i.e., not occluded by other 
objects). So, for each object at each layer, we have 
an n-pixel "probabilistic segmentation map". In 
Fig. 5c we show the 4 maps in layer 1 correspond­
ing to the objects shown in Fig. 5a, obtained after 
12 iterations of the sum-product algorithm. 

One such set of segmentation maps can be drawn 
for each layer. For deeper layers, the maps hope­
fully segment the part of the scene that sits behind 
the objects in the shallower layers. Fig. 7a shows 
the sets of segmentation maps corresponding to 
different layers, after each iteration of probability 
propagation, for the input image shown on the far 
right. After 1 iteration, the segmentation in the Figure 6: An accumulator net-
first layer is quite poor, causing uncertain segmen- work for layered vision. 

tation in deeper layers (except for the wall, which is mostly segmented properly in 
layer 2). As iterations increases, the algorithm converges to the correct segmenta­
tion, where object 2 is in front, followed by objects 3, 4 and 1 (the wall). 

It may appear from the input image in Fig. 7a that another possible depth ordering 
is object 2 in front, followed by objects 4, 3 and 1 - i.e., objects 3 and 4 may be 
reversed. However, it turns out that if this were the order, a small amount of dark 
hair from the top of the horizontal head would be showing. 

We added an extremely large amount of noise the the image used above, to see what 
the algorithm would do when the two depth orders really are equally likely. Fig. 7b 
shows the noisy image and the series of segmentation maps produced at each layer 



as the number of iterations 
increases. The segmenta­
tion maps for layer 1 show 
that object 2 is correctly 
identified as being in the 
front. 

Quite surprisingly, the seg­
mentation maps in layer 2 
oscillate between the two 
plausible interpretations of 
the scene - object 3 in front 
of object 4 and object 4 in 
front of object 3. Although 
we do not yet know how ro­
bust these oscillations are, 
or how accurately they re­
flect the probability masses 
in the different modes, this 
behavior is potentially very 
useful. 
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Figure 7: (a) Probabilistic segmentation maps for each 
layer (column) after each iteration (row) of probability 
propagation for the image on the far right. (b) When a 
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