
Accumulator networks: Suitors of local
probability propagation

Brendan J. Frey and Anitha Kannan
Intelligent Algorithms Lab, University of Toronto, www. cs. toronto. edu/ "-'frey

Abstract

One way to approximate inference in richly-connected graphical
models is to apply the sum-product algorithm (a.k.a. probabil­
ity propagation algorithm), while ignoring the fact that the graph
has cycles. The sum-product algorithm can be directly applied in
Gaussian networks and in graphs for coding, but for many condi­
tional probability functions - including the sigmoid function - di­
rect application of the sum-product algorithm is not possible. We
introduce "accumulator networks" that have low local complexity
(but exponential global complexity) so the sum-product algorithm
can be directly applied. In an accumulator network, the probability
of a child given its parents is computed by accumulating the inputs
from the parents in a Markov chain or more generally a tree. After
giving expressions for inference and learning in accumulator net­
works, we give results on the "bars problem" and on the problem
of extracting translated, overlapping faces from an image.

1 Introduction
Graphical probability models with hidden variables are capable of representing com­
plex dependencies between variables, filling in missing data and making Bayes­
optimal decisions using probabilistic inferences (Hinton and Sejnowski 1986; Pearl
1988; Neal 1992). Large, richly-connected networks with many cycles can poten­
tially be used to model complex sources of data, such as audio signals, images and
video. However, when the number of cycles in the network is large (more precisely,
when the cut set size is exponential), exact inference becomes intractable. Also, to
learn a probability model with hidden variables, we need to fill in the missing data
using probabilistic inference, so learning also becomes intractable.

To cope with the intractability of exact inference, a variety of approximate inference
methods have been invented, including Monte Carlo (Hinton and Sejnowski 1986;
Neal 1992), Helmholz machines (Dayan et al. 1995; Hinton et al. 1995), and
variational techniques (Jordan et al. 1998).

Recently, the sum-product algorithm (a.k.a. probability propagation, belief prop­
agation) (Pearl 1988) became a major contender when it was shown to produce
astounding performance on the problem of error-correcting decoding in graphs with
over 1,000,000 variables and cut set sizes exceeding 2100,000 (Frey and Kschischang
1996; Frey and MacKay 1998; McEliece et al. 1998).

The sum-product algorithm passes messages in both directions along the edges in a
graphical model and fuses these messages at each vertex to compute an estimate of
P(variablelobs), where obs is the assignment of the observed variables. In a directed

(b) ••• Xj (c)

Ynj(Xj) Ynj(Xj)

~K(Y) ~K(Y)

••• ZK

Figure 1: The sum-product algorithm passes messages in both directions along each edge in a
Bayesian network. Each message is a function of the parent. (a) Incoming messages are fused
to compute an estimate of P(ylobservations). (b) Messages are combined to produce an
outgoing message 7rk(Y). (c) Messages are combined to produce an outgoing message >'j(Xj).
Initially, all messages are set to 1. Observations are accounted for as described in the text.

graphical model (Bayesian belief network) the message on an edge is a function of
the parent of the edge. The messages are initialized to 1 and then the variables are
processed in some order or in parallel. Each variable fuses incoming messages and
produces outgoing messages, accounting for observations as described below.

If Xl, ... , X J are the parents of a variable y and Zl, ... , Z K are the children of y,
messages are fused at y to produce function F(y) as follows (see Fig. Ia):

F(y) = (IT Ak(y)) (L: ... L: P(yIXI, . . . , xJ) IT 7I"j (Xj)) Rj P(y, obs), (1)
k X l X J j

where P(y lXI, ... , xJ) is the conditional probability function associated with y. If
the graph is a tree and if messages are propagated from every variable in the network
to y, as described below, the estimate is exact: F(y) = P(y, obs). Also, normalizing
F(y) gives P(ylobs). If the graph has cycles, this inference is approximate.

The message 7rk(Y) passed from y to Zk is computed as follows (see Fig. Ib):

7I"k(Y) = F(y)/Ak(Y). (2)
The message Aj(Xj) passed from y to Xj is computed as follows (see Fig. Ic):

Aj(Xj) = L:L: ... L: L: ... L:(IT Ak(y))P(ylxl, ... ,XJ)(IT 7I"i(Xi)). (3)
y X l X; - l Xj+1 XJ k i#j

Notice that Xj is not summed over and is excluded from the product of the 7r­

messages on the right.

If y is observed to have the value y*,
messages are modified as follows:

the fused result at y and the outgoing 71"

F {F(Y) if Y = y*
(y) f- 0 otherwise

{ 7I"k(Y) if Y = y*
, 7I"k (y) f- 0 otherwise (4)

The outgoing A messages are computed as follows:

Aj(Xj) = L: ... L: L: ... L:(IT Ak(Y*))P(y = Y*IXI' . . . ,XJ)(IT 7I"i(Xi)). (5)
Xl X; - l X;+l XJ k i#j

If the graph is a tree, these formulas can be derived quite easily using the fact that
summations distribute over products. If the graph is not a tree, a local independence
assumption can be made to justify these formulas. In any case, the algorithm
computes products and summations locally in the graph, so it is often called the
"sum-product" algorithm.

'"

, ,

SN ,2

l' ' N,N- !

' N

Figure 2: The local complexity of a richly connected directed graphical model such as the one
in (a) can be simplified by assuming that the effects of a child's parents are accumulated by a
low-complexity Markov chain as shown in (b) . (c) The general structure of the "accumulator
network" considered in this paper.

2 Accumulator networks
The complexity of the local computations at a variable generally scales exponen­
tially with the number of parents of the variable. For example, fusion (1) re­
quires summing over all configurations of the parents. However, for certain types
of conditional probability function P(yIXI,' .. ,xJ), this exponential sum reduces
to a linear-time computation. For example, if P(yIXI,' .. ,xJ) is an indicator func­
tion for y = Xl XOR X2 XOR ... XOR XJ (a common function for error-correcting
coding), the summation can be computed in linear time using a trellis (Frey and
MacKay 1998). If the variables are real-valued and P(y lXI, ... ,xJ) is Gaussian
with mean given by a linear function of Xl, ... ,X J, the integration can be com­
puted using linear algebra (c.f. Weiss and Freeman 2000; Frey 2000).

In contrast, exact local computation for the sigmoid function, P(y lXI, ... ,XJ) =
1/(1 + exp[-Bo - L:j BjXj]) , requires the full exponential sum. Barber (2000) con­
siders approximating this sum using a central limit theorem approximation.

In an "accumulator network" , the probability of a child given its parents is computed
by accumulating the inputs from the parents in a Markov chain or more generally
a tree. (For simplicity, we use Markov chains in this paper.) Fig. 2a and b show
how a layered Bayesian network can be redrawn as an accumulator network. Each
accumulation variable (state variable in the accumulation chain) has just 2 parents,
and the number of computations needed for the sum-product computations for
each variable in the original network now scales with the number of parents and the
maximum state size of the accumulation chain in the accumulator network.

Fig. 2c shows the general form of accumulator network considered in this paper,
which corresponds to a fully connected Bayes net on variables Xl, ... ,X N. In this
network, the variables are Xl, ... ,X N and the accumulation variables for Xi are
Si,l, ... ,Si,i-l' The effect of variable Xj on child Xi is accumulated by Si,j' The
joint distribution over the variables X = {Xi: i = 1, ... ,N} and the accumulation
variables S = {Si,j : i = 1, ... ,N,j = 1, ... ,i -1} is

N i-I

P(X, S) = II [(II P(Si,j IXj, Si,j-l)) P(xilsi,i-d]. (6)
i=l j=l

If Xj is not a parent of Xi in the original network, we set P(si,jlxj,Si,j-t) = 1 if
Si,j = Si,j-l and P(Si,j IXj, Si,j-l) = 0 if Si,j :I Si,j-l'

A well-known example of an accumulator network is the noisy-OR network (Pearl

1988; Neal 1992). In this case, all variables are binary and we set

if Si,j-l = 1,
if Xj = 1 and Si,j-l = 0,
otherwise,

where Pi,j is the probability that Xj = 1 turns on the OR-chain.

(7)

Using an accumulation chain whose state space size equals the number of configu­
rations of the parent variables, we can produce an accumulator network that can
model the same joint distributions on Xl, ... , XN as any Bayesian network.

Inference in an accumulator network is performed by passing messages as described
above, either in parallel, at random, or in a regular fashion, such as up the accumu­
lation chains, left to the variables, right to the accumulation chains and down the
accumulation chains, iteratively.

Later, we give results for an accumulator network that extracts images of trans­
lated, overlapping faces from an visual scene. The accumulation variables represent
intensities of light rays at different depths in a layered 3-D scene.

2.1 Learning accuIIlulator networks

To learn the conditional probability functions in an accumulator network, we ap­
ply the sum-product algorithm for each training case to compute sufficient statis­
tics. Following Russell and Norvig (1995), the sufficient statistic needed to up­
date the conditional probability function P(si,jlxj,Si,j-t) for Si,j in Fig. 2c is
P(Si,j, Xj, Si,j_llobs). In particular,

8 log P(obs) _ P(Si,j, Xj, Si,j-llobs)

8P(Si,j IXj, Si,j-l) P(Si,j IXj, Si,j-l)
(8)

P(Si,j,Xj,Si,j-llobs) is approximated by normalizing the product of
P(Si,j IXj, Si,j-l) and the). and 11'" messages arriving at Si,j. (This approxi­
mation is exact if the graph is a tree.)

The sufficient statistics can be used for online learning or batch learning. If batch
learning is used, the sufficient statistics are averaged over the training set and
then the conditional probability functions are modified. In fact, the conditional
probability function P(si,jlxj,Si,j-l) can be set equal to the normalized form of
the average sufficient statistic, in which case learning performs approximate EM,
where the E-step is approximated by the sum-product algorithm.

3 The bars problem

Fig. 3a shows the network structure for the binary bars problem and Fig. 3b shows
30 training examples. For an N x N binary image, the network has 3 layers of
binary variables: 1 top-layer variable (meant to select orientation); 2N middle­
layer variables (mean to select bars); and N 2 bottom-layer image variables. For
large N, performing exact inference is computationally intractable and hence the
need for approximate inference.

Accumulator networks enable efficient inference using probability propagation since
local computations are made feasible. The topology of the accumulator network
can be easily tailored to the bars problem, as described above.

Given an accumulator network with the proper conditional probability tables,
inference computes the probability of each bar and the probability of vertical

(a) (b) (c) " 0
_c.=a

11.111
1II Imi 0

1IIIml
_ -=-::::J _ DC-

"'1m
11111111
I 1I III , , . ,

of Iterations

Figure 3: (a) Bayesian network for bars problem. (b) Examples of typical images. (c) KL
divergence between approximate inference and exact inference after each iteration

versus horizontal orientation for an input image. After each iteration of prob­
ability propagation, messages are fused to produce estimates of these proba­
bilities. Fig. 3c shows the Kullback Leibler divergence between these approx­
imate probabilities and the exact probabilities after each iteration, for 5 in­
put images. The figure also shows the most probable configuration found by
approximate inference. In most cases, we found that probability propagation
correctly infers the presence of appropriate
bars and the overall orientation of the bars.
In cases of multiple interpretations of the im­
age (e.g., Fig. 3c, image 4), probability prop­
agation tended to find appropriate interpre­
tations, although the divergence between the
approximate and exact inferences is larger.

Starting with an accumulator network with
random parameters, we trained the network
as described above. Fig. 4 shows the online
learning curves corresponding to different
learning rates. The log-likelihood oscillates
and although the optimum (horizontal line)
is not reached, the results are encouraging.

-:,~========:::;;",,;;;;; .. _;;;;;;;;;:.,~;;;; ... "","Tloo

~

.c
s: - 10

." g

.£-12

]!
.:J
~-14

-"

.....

2 " # ofsweeps " xlD"

Figure 4: Learning curves for learn­
ing rates .05, .075 and .1

4 Accumulating light rays for layered vision

We give results on an accumulator network that extracts image components from
scenes constructed from different types of overlapping face at random positions.
Suppose we divide up a 3-D scene into L layers and assume that one of 0 objects
can sit in each layer in one of P positions. The total number of object-position
combinations per layer is K = 0 x P. For notational convenience, we assume
that each object-position pair is a different object modeled by an opaqueness map
(probability that each pixel is opaque) and an appearance map (intensity of each
pixel). We constrain the opaqueness and appearance maps of the same object in
different positions to be the same, up to translation. Fig. 5a shows the appearance
maps of 4 such objects (the first one is a wall).

In our model, Pkn is the probability that the nth pixel of object k is opaque and
Wkn is the intensity of the nth pixel for object k. The input images are modeled
by randomly picking an object in each of L layers, choosing whether each pixel in
each layer is transparent or opaque, and accumulating light intensity by imaging
the pixels through the layers, and then adding Gaussian noise.

Fig. 6 shows the accumulator network for this model. zl E {I, .. . ,K} is the index

(a) (b)

Figure 5: (a) Learned appearance maps for a wall (all pixels dark and nearly opaque) and 3
faces. (b) An image produced by combining the maps in (a) and adding noise. (c) Object­
specific segmentation maps. The brightness of a pixel in the kth picture corresponds to the
probability that the pixel is imaged by object k.

of the object in the lth layer, where layer 1 is adjacent to the camera and layer Lis
farthest from the camera. y~ is the accumulated discrete intensity of the light ray
for pixel n at layer l. y~ depends on the identity of the object in the current layer
zl and the intensity of pixel n in the previous layer y~+1. So,

1
1

Zl = 0, y~ = y~+1
zl > 0, y~ = W zl n = y~+l
zl > 0 yl = W ...J. yl+l 'n z ln -r n
zl > 0 yl = yl+l ...J. W 'n n -;- zln

otherwise.

(9)

Each condition corresponds to a different imaging operation at layer l for the light
ray corresponding to pixel n. Xn is the discretized intensity of pixel n, obtained
from the light ray arriving at the camera, y~. P(xnly~) adds Gaussian noise to y~.

After training the network on 200 labeled images, zL

we applied iterative inference to identify and 10- ~'::::::::===:::::::::---
cate image components. After each iteration, the
message passed from y~ to zl is an estimate of the
probability that the light ray for pixel n is imaged
by object zl at layer l (i.e., not occluded by other
objects). So, for each object at each layer, we have
an n-pixel "probabilistic segmentation map". In
Fig. 5c we show the 4 maps in layer 1 correspond­
ing to the objects shown in Fig. 5a, obtained after
12 iterations of the sum-product algorithm.

One such set of segmentation maps can be drawn
for each layer. For deeper layers, the maps hope­
fully segment the part of the scene that sits behind
the objects in the shallower layers. Fig. 7a shows
the sets of segmentation maps corresponding to
different layers, after each iteration of probability
propagation, for the input image shown on the far
right. After 1 iteration, the segmentation in the Figure 6: An accumulator net-
first layer is quite poor, causing uncertain segmen- work for layered vision.

tation in deeper layers (except for the wall, which is mostly segmented properly in
layer 2). As iterations increases, the algorithm converges to the correct segmenta­
tion, where object 2 is in front, followed by objects 3, 4 and 1 (the wall).

It may appear from the input image in Fig. 7a that another possible depth ordering
is object 2 in front, followed by objects 4, 3 and 1 - i.e., objects 3 and 4 may be
reversed. However, it turns out that if this were the order, a small amount of dark
hair from the top of the horizontal head would be showing.

We added an extremely large amount of noise the the image used above, to see what
the algorithm would do when the two depth orders really are equally likely. Fig. 7b
shows the noisy image and the series of segmentation maps produced at each layer

as the number of iterations
increases. The segmenta­
tion maps for layer 1 show
that object 2 is correctly
identified as being in the
front.

Quite surprisingly, the seg­
mentation maps in layer 2
oscillate between the two
plausible interpretations of
the scene - object 3 in front
of object 4 and object 4 in
front of object 3. Although
we do not yet know how ro­
bust these oscillations are,
or how accurately they re­
flect the probability masses
in the different modes, this
behavior is potentially very
useful.

References

D. Barber 2000. Tractable
belief propagation. The
Learning Workshop, Snow­
bird, UT.

B. J. Frey and F. R. Kschis­
chang 1996. Probability
propagation and iterative de­
coding. Proceedings of the
34th Allerton Conference on
Communication, Control and
Computing 1996, University
of Illinois at Urbana.

(a) Layer 4

•••• •• [J .
' •• C

D •••
D •••
D •••
D •••
D •••
D •••
D •••
D •••
D •••

(b) Layer 4

••• . [J 1Il
1.[lC

. [J 1Il
•• [lC
•• [J 1Il

.[lC
..[J 1Il
1.[lC
I.[J .
•• [lC
I.[J .

Layer 3

• [] ...
•• C

~ •• C
~ •• C
~ •• C
~ •• C
~ •• C
~ •• C
~ •• C
~ •• C
~ •• C

Layer 3

• [I . [J .
1.[lC
•• [J .
1.[lC
I.[J .
1.[lC
I.[J .
I.IIC
I.[J .
1.[lC
. '. [J .

Layer 2

II I
~.[].

I. [J~
~.[JI
~.[J~
~.[J~
~.[J~
~.[J~
~.[J~
~.[J~
~.[J~
~.[JI

Layer 2

1 111 l.lrI.
1.[lC
I.[J •
l.tlC
I.[J .
1.[lC
I.[J .
.[lC

•• [J .
•• [lC
•• [J •

Layer 1

11)[1 •
1l[][I.
I[][lill
Il[][lill "
Il[][lill
Il[][lill
Il[][lill
Il[)[lill
Il[)[lill
Il[][lill
Il[][lill
Il[][lill

Layer 1

1111.
1l0[l.
101111
10[1.
101111
10[1.
IHIII
[10[1.
IGIIII
10[1 •
1111111
10[1 •

Figure 7: (a) Probabilistic segmentation maps for each
layer (column) after each iteration (row) of probability
propagation for the image on the far right. (b) When a

C large amount of noise is added to the image. the network
B. J . Frey and D. J.. ' 11 b . .
M K 1998 A I t · OSCI ates etween interpretations. ac ay . revo u IOn:
Belief propagation in graphs with cycles. In M. I. Jordan, M. I. Kearns and S. A. Solla
(eds) Advances in Neural Information Processing Systems 10, MIT Press, Cambridge MA.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola and L. K Saul 1999. An introduction to
variational methods for graphical models. In M. I. Jordan (ed) Learning in Graphical
Models , MIT Press, Cambridge, MA.

R. McEliece, D. J. C. MacKay and J. Cheng 1998. Turbodecoding as an instance of Pearl's
belief propagation algorithm. IEEE Journal on Selected Areas in Communications 16:2.

K P. Murphy, Y. Weiss and M. I. Jordan 1999. Loopy belief propagation for approximate
inference: An empirical study. Proceedings of the Fifteenth Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufmann, San Francisco, CA.

J . Pearl 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann , San
Mateo CA.

S. Russell and P. Norvig 1995. Artificial Intelligence: A Modern Approach. Prentice-Hall.

Y. Weiss and W . T. Freeman 2000. Correctness of belief propagation in Gaussian graphical
models of arbitrary topology. In S.A. Solla, T. KLeen, and K-R. Miiller (eds) Advances
in Neural Information Processing Systems 12, MIT Press.

