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Abstract 

We establish a principled framework for adaptive transform cod­
ing. Transform coders are often constructed by concatenating an ad 
hoc choice of transform with suboptimal bit allocation and quan­
tizer design. Instead, we start from a probabilistic latent variable 
model in the form of a mixture of constrained Gaussian mixtures. 
From this model we derive a transform coding algorithm, which is 
a constrained version of the generalized Lloyd algorithm for vector 
quantizer design. A byproduct of our derivation is the introduc­
tion of a new transform basis, which unlike other transforms (PCA, 
DCT, etc.) is explicitly optimized for coding. Image compression 
experiments show adaptive transform coders designed with our al­
gorithm improve compressed image signal-to-noise ratio up to 3 dB 
compared to global transform coding and 0.5 to 2 dB compared to 
other adaptive transform coders. 

1 Introduction 

Compression algorithms for image and video signals often use transform coding as a 
low-complexity alternative to vector quantization (VQ). Transform coders compress 
multi-dimensional data by transforming the signal vectors to new coordinates and 
coding the transform coefficients independently of one another with scalar quantiz­
ers. 

The coordinate transform may be fixed a priori as in the discrete cosine transform 
(DCT). It can also be adapted to the signal statistics using, for example, principal 
component analysis (PCA), where the goal is to concentrate signal energy in a 
few signal components. Noting that signals such as images and speech are non­
stationary, several researchers have developed non-linear [1, 2] and local linear or 
adaptive [3,4] PCA transforms for dimension reduction!. None of these transforms 
are designed to minimize compression distortion nor are they designed in concert 
with quantizer development. 

lIn dimension reduction the original d-dimensional signal is projected onto a subspace 
or submanifold of lower dimension. The retained coordinates are not quantized. 



Several researchers have extended the idea of local linear transforms to transform 
coding [5, 6, 7]. In these adaptive transform coders, the signal space is partitioned 
into disjoint regions and a transform and set of scalar quantizers are designed for 
each region. In our own previous work [7], we use k-means partitioning to define the 
regions. Dony and Haykin [5] partition the space to minimize dimension-reduction 
error. Tipping and Bishop [6] use soft partitioning according to a probabilistic rule 
that reduces, in the appropriate limit, to partitioning by dimension-reduction error. 
These systems neither design transforms nor partition the signal space with the goal 
of minimizing compression distortion. 

This ad hoc construction contrasts sharply with the solid grounding of vector quanti­
zation. Nowlan [8] develops a probabilistic framework for VQ by demonstrating the 
correspondence between a VQ and a mixture of spherically symmetric Gaussians. 
In the limit that the mixture component variance goes to zero, the Expectation­
Maximization (EM) procedure for fitting the mixture model to data becomes iden­
tical to the Linde-Buzo-Gray (LBG) algorithm [9] for vector quantizer design. 

This paper develops a similar grounding for both global and adaptive (local) trans­
form coding. We define a constrained mixture of Gaussians model that provides 
a framework for transform coder design. Our new design algorithm is simply a 
constrained version of the LBG algorithm. It iteratively optimizes the signal space 
partition, the local transforms, the allocation of coding bits, and the scalar quan­
tizer reproduction values until it reaches a local distortion minimum. This approach 
leads to two new results, an orthogonal transform and a method of partitioning the 
signal space, both designed to minimize coding error. 

2 Global Transform Coder Model 

In this section, we develop a constrained mixture of Gaussians model that provides 
a probabilistic framework for global transform coding. 

2.1 Latent Variable Model 

A transform coder converts a signal to new coordinates and then codes the coordi­
nate values independently of one another with scalar quantizers. To replicate this 
structure, we envision the data as drawn from a d-dimensionallatent data space, S, 
in which the density p( 8) = p( 81,82, ... ,8d) is a product of the marginal densities, 
PJ(8J), J = 1. . . d. 
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Figure 1: Structure of latent variable space, S, and mapping to observed space, X . The 
latent data density consists of a mixture of spherical Gaussians with component means qa 
constrained to lie at the vertices of a rectangular grid. The latent data is mapped to the 
observed space by an orthogonal transform, W. 



We model the density in the latent space with a constrained mixture of Gaussian 
densities K 

p(s) = L 7ra P(sla) (1) 
a=l 

where 7ra are the mixing coefficients and p(sla) = N(qa, ~a) is Gaussian with 
mean qa and variance ~a. The mixture component means, qa, lie at the ver­
tices of a rectangular grid as illustrated in figure (1). The coordinates of qa are 
[rliu r2i2" .. , rdiJT , where r JiJ is the i~h grid mark on the SJ axis. There are KJ 
grid mark values on the SJ axis, so the total number of grid vertices K = TIJ KJ. 

We constrain the mixture components variances, ~a to be spherically symmetric 
with the same variance, (721, with 1 the identity matrix. We do not fit (72 to the 
data, but treat it as a "knob", which we will turn to zero to reveal a transform 
coder. These mean and variance constraints yield marginal densities PJ(sJliJ) = 
N(r JiJ> (72). We write the density of S conditioned on a as 

d 

p(sla) =P(Sl, ... ,Sdla(i1, ... ,id)) = IIpJ(SJli J ). (2) 
J=l 

and constrain each 7ra to be a product of prior probabilities, 7ra (il, ... ,id) = TIJ PJir 

Incorporating these constraints into (1) and noting that the sum over the mixture 
components a is equivalent to sums over all grid mark values, the latent density 
becomes 

Kl K2 Kd d KJ 

p(s) = L L ... L IIpJiJ PJ(sJliJ) = II L PJiJ PJ(sJliJ)' (3) 

where the second equality comes by regrouping terms. 

The latent data is mapped to the observation space by an orthogonal transforma­
tion, W (figure 1). Using p(xls) = c5(x - Ws - fJ,) and (1), the density on observed 
data x conditioned on component a is p(xla) = N(W qa + fJ" (721). The total density 
on x is 

K 

p(x) = L 7ra p(xla) . (4) 
a=l 

The data log likelihood for N data vectors, {xn , n = 1 ... N}, averaged over the 
posterior probabilities p(alxn) is 

(5) 

2.2 Model Fitting and Transform Coder design 

The model (4) can be fit to data using the EM algorithm. In the limit that the 
variance of the mixture components goes to zero, the EM procedure for fitting the 
mixture model to data corresponds to a constrained LBG (CLBG) algorithm for 
optimal transform coder design. 

In the limit (72 -+ 0 the entropy term, In 7ra , becomes insignificant and the compo­
nent posteriors collapse to 

(6) 



Each data vector is assigned to the component whose mean has the smallest Eu­
clidean distance to it . These assignments minimize mean squared error. 

In the limit that (72 -+ 0, maximizing the likelihood (5) is equivalent to minimizing 
compression distortion 

1 
D = L 7ra N L Ix - Wqa _1-£1 2 (7) 

a a xER", 

where Ra = {x Ip(alx) = I}, Na is the number of x ERa, and 7ra = Na/N. 

To optimize the transform, we find the orientation of the current quantizer grid 
which minimizes (7). The transform, W, is constrained to be orthogonal, that is 
WTW = I. We first define the matrix of outer products Q 

Q = L 7raqa (~ L (x-I-£f) . 
a a xER", 

(8) 

Minimizing the distortion (7) with respect to some element of W and using Lagrange 
multipliers to enforce the orthogonality of W yields the condition 

QW = WTQT (9) 

or QW is symmetric. This symmetry condition and the orthogonality condition, 
WTW = I, uniquely determine the coding optimal transform (COT) W. The COT 
reduces to the PCA transform when the data is Gaussian. However, in general the 
COT differs from PCA. For instance in global transform coding trials on a variety 
of grayscale images, the COT improves signal-to-noise ratio (SNR) relative to PCA 
by 0.2 to 0.35 dB for fixed-rate coding at 1.0 bits per pixel (bpp). For variable-rate 
coding, SNR improvement due to using the COT is substantial, 0.3 to 1.2 dB for 
entropies of 0.25 to 1.25 bpp. 

We next minimize (7) with respect to the grid mark values, r JiJ' for J = 
1 .. . d and iJ = 1 . .. K J and the number of grid values K J for each coordinate. 
It is advantageous to rewrite compression distortion as the sum of distortions 
D = LJ DJ due to quantizing the transform coefficients SJ = WJ x, where WJ 
is the Jfh column vector of W. The rJiJ grid mark values that minimize each DJ 
are the reproduction values of a scalar Lloyd quantizer [10] designed for the trans­
form coefficients, SJ. KJ is the number of reproduction values in the quantizer for 
transform coordinate J. Allocating the log2 (K) coding bits among the transform 
coordinates so that we minimize distortion [11] determines the optimal KJ's. 

3 Local Transform Coder Model 

In this section, we develop a mixture of constrained Gaussian mixtures model that 
provides a probabilistic framework for adaptive transform coding. 

3.1 Latent Variable Model 

A local or adaptive transform coder identifies regions in data space that require 
different quantizer grids and orthogonal transforms. A separate transform coder 
is designed for each of these regions. To replicate this structure, we envision the 
observed data as drawn from one of M grids in the latent space. The latent variables, 
s, are modeled with a mixture of Gaussian densities, where the mixture components 
are constrained to lie at the grid vertices. Each grid has the same number of mixture 
components, K, however the number and spacing of grid marks on each axis can 
differ. This is illustrated schematically (in the hard-clustering limit) in figure 2. 
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Figure 2: Nonstationary data model: Structure of latent variable space, S, and mapping 
(in the hard clustering limit) to observed space, X. The density in the latent space consists 
of mixtures of spherically symmetric Gaussians. The mixture component means, qim), lie 
at the vertices the mth grid. Latent data is mapped to the observation space by W(m). 

The density on s conditioned on a single mixture component, 0: in grid m,2 is 
p(slo:, m) = N(q~m), 0-21). The latent density is a mixture of constrained Gaussian 
mixture densities, M K 

p(s) = L'lrm LP(o:lm) p(slo:, m) (10) 
m=l 0=1 

The latent data is mapped to the observation space by orthonormal transforms 
w(m). The density on x conditioned on 0: in grid m is p(xlo:, m) = N(w(m)q~m) + 
p,(m),0-2 1). The observed data density is 

M K 

p(x) = L'lrm L p(o:lm) p(xlo:, m) (11) 
m=l 0=1 

3.2 Optimal Adaptive Transform Coder Design 

In the limit that 0-2 -t 0, the EM procedure for fitting this model corresponds to a 
constrained LBG algorithm for adaptive transform coder design. As before, a single 
mixture component becomes responsible for Xn 

0: m x -t { 1 if Ix - w(m)q~m) - p,(m) 12 ::; Ix - w(m)q~m) - p,(m) 12 '<I fil, 'Y 
p( , I) 0 otherwise 

(12) 
The coding optimal partition assigns each data vector to the region, m, whose trans­
form coder compresses it with the least distortion. This differs from prior methods 
that use other partitioning criteria such as K-means clustering or Local peA parti­
tioning. In K-means clustering, a data vector is assigned to the coder whose mean 
has the smallest Euclidean distance to it. Local peA partitions the data space to 
minimize dimension reduction error [3], not the coding error. Local peA requires 
a priori selection of a target dimension, instead of allowing the dimension to be 
optimized for the desired level of compression. 

To minimize distortion with respect to the transform coders, we can optimize the 
parameters of each region separately. A region's parameters are estimated from just 
the data vectors assigned to it. We find each region's transform and the number 
and placement of grid mark values as we did for the global transform coder. 

2Each grid has its own mixture component index, am. We drop the m subscript from 
a to simplify notation. 



4 Adaptive Transform Coding Results 

We find the adaptive transform coder for a set of images by applying our algorithm 
to a training image. The data vectors are 8 x 8 image pixel blocks. Then we 
compress a test image using the resulting transform coder. We measure compressed 
test image quality with signal-to-noise ratio, SNR = 10log1o (pixel variance/MSE), 
where MSE is the per pixel mean-squared coding error. 

Our implementation modifies codebook optimization to reduce computational re­
quirements. First, instead of using optimal bit allocation, we use a greedy algorithm 
[12], which allocates bits one at a time to the coordinate with the largest distor­
tion. In global transform coding trials (0.375 to 0.75 bpp), this substitution reduced 
SNR by < 0.1 dB. Second, instead of using the coding optimal transform (9), we 
use the peA transform. In global transform coding trials (0.25 to 0.75 bpp), this 
substitution reduced SNR by 0.05 to 0.27 dB. 

We report on compression experiments using two types of images, Magnetic Reso­
nance Images (MRI) and gray-scale natural images of traffic moving through street 
intersections. These MRI images were used by Dony and Haykin in [5] and we du­
plicate their image pre-processing. One MRI image is decomposed into overlapping 
8 x 8 blocks to form 15,625 training vectors; a second image is used for testing. The 
traffic images are frames from two video sequences. We use frames from the first 
half of both sequences for training and frames from the last halves for testing. 
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(a) MRl test image SNR. All adap­
tive coders have 16 regions. 
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(b) Traffic test image SNR. All 
adaptive coders have 32 regions. 

Figure 3: The x is our coding optimal partition, 0 local peA partition with dimen­
sion eight, e k-means clustering, and + is global peA. The dotted line values are 
local peA results from [5]. Errorbars indicate standard deviation of 8 trials. 

Figure 3 shows compressed test image SNR for four compressed bit-rates and four 
compression methods. The quoted bit-rates include the bits necessary to specify 
region assignments. The x results are for our transform coder which uses coding 
optimal partitioning. Our system increases SNR compared to global peA (+) by 2.3 
to 3.0 dB, k-means clustering (e) by 1.1 to 1.8 dB and local peA partitioning with 
target dimension eight (0) by 0.5 to 2.0 dB. In addition, our system yields image 
SNRs 1.6 to 3.0 dB higher that Dony and Haykin's local peA transform coder 
(dimension eight) [5]. Their local peA coder does not use optimal bit allocation or 
Lloyd quantizers, which further reduces compressed image SNR. 



5 Summary 

In this paper, we cast the design of both conventional and adaptive transform 
coders as a constrained optimization procedure. We derive our algorithm from 
the EM procedure for fitting a mixture of mixtures model to data. In contrast to 
standard transform coder design, all operations: partitioning the signal space (for 
the adaptive case), transform design, allocation of coding bits, and quantizer design, 
are coupled together to minimize compression distortion. This approach leads to a 
new transform basis that is optimized for coding. The coding optimal transform is 
in general different from PCA. This approach also leads to a method of data space 
partitioning that is optimized for coding. This method assigns each signal vector 
to the coder the compresses it with the least distortion. Our empirical results show 
marked SNR improvement (0.5 to 2 dB) relative to other partitioning methods. 
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