
Incorporating Second-Order Functional
Knowledge for Better Option Pricing

Charles Dugas, Yoshua Bengio, Fran~ois Belisle, Claude Nadeau:Rene Garcia
CIRANO, Montreal, Qc, Canada H3A 2A5

{dugas ,beng i oy,beli s lfr ,na de a u c }@i ro .umont r e a l. ca
garc i ar@c i ran o .qc . ca

Abstract

Incorporating prior knowledge of a particular task into the architecture
of a learning algorithm can greatly improve generalization performance.
We study here a case where we know that the function to be learned is
non-decreasing in two of its arguments and convex in one of them. For
this purpose we propose a class of functions similar to multi-layer neural
networks but (1) that has those properties, (2) is a universal approximator
of continuous functions with these and other properties. We apply this
new class of functions to the task of modeling the price of call options.
Experiments show improvements on regressing the price of call options
using the new types of function classes that incorporate the a priori con­
straints.

1 Introduction

Incorporating a priori knowledge of a particular task into a learning algorithm helps re­
ducing the necessary complexity of the learner and generally improves performance, if the
incorporated knowledge is relevant to the task and really corresponds to the generating pro­
cess of the data. In this paper we consider prior knowledge on the positivity of some first
and second derivatives of the function to be learned. In particular such constraints have
applications to modeling the price of European stock options. Based on the Black-Scholes
formula, the price of a call stock option is monotonically increasing in both the "money­
ness" and time to maturity of the option, and it is convex in the "moneyness". Section 3
better explains these terms and stock options. For a function f(Xl, X2) of two real-valued
arguments, this corresponds to the following properties:

> 0, {Pf>o
8xr -

(1)

The mathematical results of this paper (section 2) are the following: first we intro­
duce a class of one-argument functions (similar to neural networks) that is positive, non­
decreasing and convex in its argument, and we show that this class of functions is a univer­
sal approximator for positive functions with positive first and second derivatives. Second,
in the main theorem, we extend this result to functions of two or more arguments, with
some having the convexity property and all having positive first derivative. This result rests
on additional properties on cross-derivatives, which we illustrate below for the case of two

·C.N. is now with Health Canada at Cl aude-.Nad eau@hc-sc . gc . c a

arguments:

(2)

Comparative experiments on these new classes of functions were performed on stock option
prices, showing some improvements when using these new classes rather than ordinary
feedforward neural networks. The improvements appear to be non-stationary but the new
class of functions shows the most stable behavior in predicting future prices. The detailed
results are presented in section 5.

2 Theory

Definition
A class of functions :i from IRn to IR is a universal approximator for a class of functions
F from IRn to IR if for any f E F, any compact domain D C IRn , and any positive E, one

can find a j E :i with sUP"'ED If(x) - j(x)1 ~ E-

It has already been shown that the class of artificial neural networks with one hidden layer
H

N = {f(x) = bo + 2: Wih(bi + 2: VijXj)} (3)
i=l j

e.g. with a sigmoid activation function h(s) = l+~-" are universal approximators of
continuous functions [1, 2, 5]. The number of hidden units H of the neural network is a
hyper-parameter that controls the accuracy of the approximation and it should be chosen to
balance the trade-off between accuracy (bias of the class of functions) and variance (due to
the finite sample used to estimate the parameters of the model), see also [6].

Since h is monotonically increasing, it is easy to force the first derivatives with respect to
x to be positive by forcing the weights to be positive, for example with the exponential
function:

H

N+ = {f(x) = bo + 2: eWi h(bi + 2: eVii Xj)} (4)
i=l j

because h'(s) = h(s)(1- h(s)) > o.
Since the sigmoid h has a positive first derivative, its primitive, which we call softplus, is
convex:

((s) = log(1 + eS) (5)

i.e., d((s)/ds = h(s) = 1/(1 + C S). The basic idea of the proposed class of functions
N++ is to replace the sigmoid of a sum by a product of softplus or sigmoid functions over
each of the dimensions (using the softplus over the convex dimensions and the sigmoid
over the others):

Hen

cN++={f(x)=ebo+2:eWi(II((bij+eviiXj))(II h(bij+eViixj))} (6)
i=l j=l j=c+l

One can readily check that the first derivatives wrt Xj are positive, and that the second
derivatives wrt Xj for j ~ c are positive. However, this class of functions has other prop­
erties. Let (it,··· ,jm) be a set of indices with 1 ~ ji ~ c (convex dimensions), and let
(jt, ... , j~) be a set of indices c + 1 ~ j~ ~ n (the other dimensions), then

am +v f a2m+v f
aXjl ... aXj= aXj~ ... Xj~ ~ 0, aX]l . .. aX]= aXj~ ... Xj~ ~ 0 (7)

Note that m or p can be 0, so as special cases we find that f is positive, and that it is
monotonically increasing w.r.t. all its inputs, and convex w.r.t. the first c inputs.

2.1 Universality of cN++ over ~

Theorem Within the set F ++ of continuous functions from ~n to ~ whose first and second
derivatives are non-negative (as specified by equation 7), the class cN++ is a universal
approximator.

Proof

For lack of space we only show here a sketch of the proof, and only for the case n = 2
and c = 1 (one convex dimension and one other dimension), but the same principle allows
to prove the more general case. Let f(x) E F++ be the function to approximate with a
function 9 E IN++. To perform our approximation we will restrict 9 to the subset of
IN++ where the sigmoid becomes a step function B(x) = [x >o and where the softplus

becomes the positive part function x+ = max(O, x). Let D be the compact domain of
interest and t: the desired approximation precision. We focus our attention on an axis­
aligned rectangle T with lower-left comer (ai, bl) and upper right comer (a2' b2) such
that it is the smallest such rectangle enclosing D and it can be partitionned into squares of
length L forming a grid such that the value of f at neighboring grid points does not differ
by more than t:. The number of square grids on the Xl axis is Nl and the number on the X2
axis is N2. The number of hidden units is H = (Nl + 1)(N2 + 1). Let Xij = (Xi, Xj) =
(al + iL, bl + jL) be the grid points, with i = 0,1, ... , Nl , j = 0,1, ... , N2. Also,
x = (Xl, X2). With k = i(N2 + 1) + j, we recursively build a series of functions gk(X) as
follows :

with increment

for k = 1 to H and with initial approximation go = f(al, bl). The final approximation
is g(x) = gH(X), It is exact at every single point on the grid and within t: of the true
function value anywhere within D. To prove this, we need to show that at every step of the
recursive procedure, the necessary increment is nonnegative (since it must be equated with
e Wk) . First note that the value of 9 H (Xij) is strictly affected by the set of increments ~st
for which s <= i and t <= j so that,

j

f(Xij) = gH(Xij) = L: L: ~st(i - s + 1)L
s=Ot=o

Isolating ~ij and doing some algebra, we get,

~ij = ~;1,Xl,X2gH(Xij)L2

where ~~i ,Xj,Xk is the third degree finite difference with respect to arguments Xi, Xj, Xk,
i.e. ~~1,Xl,XJ(Xl,X2) = (~~1,XJ(Xl,X2) - ~~l,xJ(Xl - L,X2))/L, where simi­
larly ~~l,xJ(Xl,X2) = (~xlf(Xl,X2) - ~xJ(Xl,X2 - L))/L, and ~xlf(Xl,X2) =
(f(Xl' X2) - f(Xl - L, X2))/ L. By the mean value theorem, the third degree finite differ­
ence is nonnegative if the corresponding third derivative is nonnegative everywhere over the
finite interval which is obtained by constraint 7. Finally, the third degree finite difference
being nonnegative, the corresponding increment is also nonnegative and this completes the
proof.

Corollary Within the set of positive continuous functions from ~ to ~ whose first and
second derivatives are non-negative, the class IN++ is a universal approximator.

3 Estimating Call Option Prices

An option is a contract between two parties that entitles the buyer to a claim at a future
date T that depends on the future price, ST of an underlying asset whose price at time t is
St. In this paper we consider the very common European call options, in which the value
of the claim at maturity (time T) is max(O, ST - K), i.e. if the price is above the strike
price K, then the seller of the option owes ST - K dollars to the buyer. In the no-arbitrage
framework, the call function is believed to be a function of the actual market price of the
security (St), the strike price (K), the remaining time to maturity (T = T - t), the risk
free interest rate (r) , and the volatility of the return (a). The challenge is to evaluate the
value of the option prior to the expiration date before entering a transaction. The risk free
interest rate (r) needs to be somehow extracted from the term structure and the volatility
(a) needs to be forecasted, this latest task being a field of research in itself. We have [3]
previously tried to feed in neural networks with estimates of the volatility using historical
averages but so far, the gains remained insignificant. We therefore drop these two features
and rely on the ones that can be observed: St, K, T. One more important result is that
under mild conditions, the call option function is homogeneous of degree one with respect
to the strike price and so our final approximation depends on two variables: the moneyness
(M = Stl K) and the time to maturity (T).

ctl K = f(M, T) (8)

An economic theory yielding to the Black-Scholes formula suggest that f has the properties
of (1), so we will evaluate the advantages brought by the function classes of the previous
section. However, it is not clear whether the constraint on the cross derivatives that are
incorporated in IN++ should or not be present in the true price function. It is known that
the Black-Scholes formula does not adequately represent the market pricing of options, but
it might still be a useful guide in designing a learning algorithm for option prices.

4 Experimental Setup

As a reference model, we use a simple multi-layered perceptron with one hidden layer
(eq. 3). We also compare our results with a recently proposed model [4] that closely resem­
bles the Black-Scholes formula for option pricing (i.e. another way to incorporate possibly
useful prior knowledge):

nh

yES a + M . L i31 ,i . h('Yi,o + 'Yi, l . M + 'Yi,2 . T)
i=l

nh

+ e-rr . L i32 ,i . hbi,3 + 'Yi,4 . M + 'Yi,5 . T).
i=l

(9)

We evaluate two new architectures incorporating some or all of the constraints defined in
equation 7.

We used european call option data from 1988 to 1993. A total of 43518 transaction prices
on european call options on the S&P500 index were used. In section 5, we report results
on 1988 data. In each case, we used the first two quarters of 1988 as a training set (3434
examples), the third quarter as a validation set (1642 examples) for model selection and 4
to 20 quarters as a test sets (each with around 1500 examples) for final generalization error
estimation. In tables 1 and 2, we present results for networks with unconstrained weights
on the left-hand side, and weights constrained to positive and monotone functions through
exponentiation of parameters on the right-hand side. For each model, the number of hidden
units varies from one to nine. The mean squared error results reported were obtained as
follows : first, we randomly sampled the parameter space 1000 times. We picked the best
(lowest training error) model and trained it up to 1000 more times. Repeating this procedure

10 times, we selected and averaged the performance of the best of these 10 models (those
with training error no more than 10% worse than the best out of 10). In figure 1, we present
tests of the same models on each quarter up to and including 1993 (20 additional test sets)
in order to assess the persistence (conversely, the degradation through time) of the trained
models.

5 Forecasting Results

Simple Multi-Layered Perceptrons
Mean Squared Error Results on Call Option Pricing (x 10-4)

Units Unconstrained weights Constrained weights
Train Valid Test! Test2 Train Valid Test! Test2

1 2.38 1.92 2.73 6.06 2.67 2.32 3.02 3.60
2 1.68 1.76 1.51 5.70 2.63 2.14 3.08 3.81
3 1.40 1.39 1.27 27.31 2.63 2.15 3.07 3.79
4 1.42 1.44 1.25 27.32 2.65 2.24 3.05 3.70
5 1.40 1.38 1.27 30.56 2.67 2.29 3.03 3.64
6 1.41 1.43 1.24 33.12 2.63 2.14 3.08 3.81
7 1.41 1.41 1.26 33.49 2.65 2.23 3.05 3.71
8 1.41 1.43 1.24 39.72 2.63 2.14 3.07 3.80
9 1.40 1.41 1.24 38.07 2.66 2.27 3.04 3.67

Black-Scholes Similar Networks
Mean Squared Error Results on Call Option Pricing (x 10-4)

Units Unconstrained weights Constrained weights
Train Valid Test! Test2 Train Valid Test! Test2

1 1.54 1.58 1.40 4.70 2.49 2.17 2.78 3.61
2 1.42 1.42 1.27 24.53 1.90 1.71 2.05 3.19
3 1.40 1.41 1.24 30.83 1.88 1.73 2.00 3.72
4 1.40 1.39 1.27 31.43 1.85 1.70 1.96 3.15
5 1.40 1.40 1.25 30.82 1.87 1.70 2.01 3.51
6 1.41 1.42 1.25 35.77 1.89 1.70 2.04 3.19
7 1.40 1.40 1.25 35.97 1.87 1.72 1.98 3.12
8 1.40 1.40 1.25 34.68 1.86 1.69 1.98 3.25
9 1.42 1.43 1.26 32.65 1.92 1.73 2.08 3.17

Table 1: Left: the parameters are free to take on negative values. Right: parameters are
constrained through exponentiation so that the resulting function is both positive and mono­
tone increasing everywhere w.r.t. to both inputs. Top: regular feedforward artificial neural
networks. Bottom: neural networks with an architecture resembling the Black-Scholes for­
mula as defined in equation 9. The number of units varies from 1 to 9 for each network
architecture. The first two quarters of 1988 were used for training, the third of 1988 for
validation and the fourth of 1988 for testing. The first quarter of 1989 was used as a second
test set to assess the persistence of the models through time (figure 1). In bold: test results
for models with best validation results.

As can be seen in tables 1 and 2, the positivity constraints through exponentiation of the
weights allow the networks to avoid overfitting. The training errors are generally slightly
lower for the networks with unconstrained weights, the validation errors are similar but fi­
nal test errors are disastrous for unconstrained networks, compared to the constrained ones.
This "liftoff' pattern when looking at training, validation and testing errors has triggered
our attention towards the analysis of the evolution of the test error through time. The un­
constrained networks obtain better training, validation and testing (test 1) results but fail in

Products of SoftPlus and Sigmoid Functions
Mean Squared Error Results on Call Option Pricing (x 10 - 4)

Units Unconstrained weights Constrained weights
Train Valid Testl Test2 Train Valid Test1 Test2

1 2.27 2.15 2.35 3.27 2.28 2.14 2.37 3.51
2 1.61 1.58 1.58 14.24 2.28 2.13 2.37 3.48
3 1.51 1.53 1.38 18.16 2.28 2.13 2.36 3.48
4 1.46 1.51 1.29 20.14 1.84 1.54 1.97 4.19
5 1.57 1.57 1.46 10.03 1.83 1.56 1.95 4.18
6 1.51 1.53 1.35 22.47 1.85 1.57 1.97 4.09
7 1.62 1.67 1.46 7.78 1.86 1.55 2.00 4.10
8 1.55 1.54 1.44 11.58 1.84 1.55 1.96 4.25
9 1.46 1.47 1.31 26.13 1.87 1.60 1.97 4.12

Sums of SoftPlus and Sigmoid functions
Mean Squared Error Results on Call Option Pricing (x 10-4)

Units Unconstrained weights Constrained weights
Train Valid Testl Test2 Train Valid Test1 Test2

1 1.83 1.59 1.93 4.10 2.30 2.19 2.36 3.43
2 1.42 1.45 1.26 25.00 2.29 2.19 2.34 3.39
3 1.45 1.46 1.32 35.00 1.84 1.58 1.95 4.11
4 1.56 1.69 1.33 21.80 1.85 1.56 1.99 4.09
5 1.60 1.69 1.42 10.11 1.85 1.52 2.00 4.21
6 1.57 1.66 1.39 14.99 1.86 1.54 2.00 4.12
7 1.61 1.67 1.48 8.00 1.86 1.60 1.98 3.94
8 1.64 1.72 1.48 7.89 1.85 1.54 1.98 4.25
9 1.65 1.70 1.52 6.16 1.84 1.54 1.97 4.25

Table 2: Similar results as in table 1 but for two new architectures. Top: products of softplus
along the convex axis with sigmoid along the monotone axis. Bottom: the softplus and
sigmoid functions are summed instead of being multiplied. Top right: the fully constrained
proposed architecture.

the extra testing set (test 2). Constrained architectures seem more robust to changes in un­
derlying econometric conditions. The constrained Black-Scholes similar model performs
slightly better than other models on the second test set but then fails on latter quarters (fig­
ure 1). All in all, at the expense of slightly higher initial errors our proposed architecture
allows us to forecast with increased stability much farther in the future. This is a very
welcome property as new derivative products have a tendency to lock in values for much
longer durations (up to 10 years) than traditional ones.

6 Conclusions

Motivated by prior knowledge on the derivatives of the function that gives the price of
European options, we have introduced new classes of functions similar to multi-layer neural
networks that have those properties. We have shown one of these classes to be a universal
approximator for functions having those properties, and we have shown that using this a
priori knowledge can help in improving generalization performance. In particular, we have
found that the models that incorporate this a priori knowledge generalize in a more stable
way over time.

. ,

2

,

1

,

0

-'
'-,J

5 10 15 20
Ouar1Ofusodas lest sel tom3rd01 1988 1041ho11993(llCI)

05

"
" '1
.ii

: 11

."
• • •
•
• , ,

. , . , ,

, , , . , . , , . , ,
'.
"
"
"
"

~

°O~-----'~--~'~O----~,~,----~ro~--~
Quartorusodasleslsel 1rom3rd01 1988104lho11993(Ulci)

Figure 1: Out-of-sample results from the third quarter of 1988 to the fourth of 1993 (incl.)
for models with best validation results. Left: unconstrained models: results for the Black­
Scholes similar network. Other unconstrained models exhibit similar swinging result pat­
terns and levels of errors. Right: constrained models: the fully constrained proposed archi­
tecture (solid). The model with sums over dimensions obtains similar results. The regular
neural network (dotted). The constrained Black-Scholes model obtains very poor results
(dashed).

References

[1] G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient.
Technical report, Department of Computer Science, Tufts University, Medford, MA,
1988.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function. 2:303-314,
1989.

[3] C. Dugas, O. Bardou, and Y. Bengio. Analyses empiriques sur des transactions
d'options. Technical Report 1176, Department d'informatique et de Recherche
Operationnelle, Universite de Montreal, Montreal, Quebec, Canada, 2000.

[4] R. Garcia and R. Gen~ay. Pricing and Hedging Derivative Securities with Neural
Networks and a Homogeneity Hint. Technical Report 98s-35, CIRANO, Montreal,
Quebec, Canada, 1998.

[5] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni­
versal approximators. 2:359-366,1989.

[6] 1. Moody. Prediction risk and architecture selection for neural networks. In From
Statistics to Neural Networks: Theory and Pattern Recognition Applications. Springer,
1994.

