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Abstract

High dimensional data modeling is difficult mainly because the so-called
“curse of dimensionality”. We propose a technique called “Gaussianiza-
tion” for high dimensional density estimation, which alleviates the curse
of dimensionality by exploiting the independence structures in the data.
Gaussianization is motivated from recent developments in the statistics
literature: projection pursuit, independent component analysis and Gaus-
sian mixture models with semi-tied covariances. We propose an iter-
ative Gaussianization procedure which converges weakly: at each it-
eration, the data is first transformed to the least dependent coordinates
and then each coordinate is marginally Gaussianized by univariate tech-
niques. Gaussianization offers density estimation sharper than traditional
kernel methods and radial basis function methods. Gaussianization can
be viewed as efficient solution of nonlinear independent component anal-
ysis and high dimensional projection pursuit.

1 Introduction

Density Estimation is a fundamental problem in statistics. In the statistics literature, the
univariate problem is well-understood and well-studied. Techniques such as (variable) ker-
nel methods, radial basis function methods, Gaussian mixture models, etc, can be applied
successfully to obtain univariate density estimates. However, the high dimensional problem
is very challenging, mainly due to the problem of the so-called “curse of dimensionality”.
In high dimensional space, data samples are often sparsely distributed: it requires very
large neighborhoods to achieve sufficient counts, or the number of samples has to grows
exponentially according to the dimensions in order to achieve sufficient coverage of the
sampling space. As a result, direct extension of univariate techniques can be highly biased,
because they are neighborhood-based.

In this paper, we attempt to overcome the curse of dimensionality by exploiting indepen-
dence structures in the data. We advocate the notion that

Independence lifts the curse of dimensionality!
Indeed, if the dimensions are independent, then there is no curse of dimensionality since
the high dimensional problem can be reduced to univariate problems along each dimension.

For natural data sets which do not have independent dimensions, we would like to construct
transforms such that after the transformation, the dimensions become independent. We pro-
pose a technique called “Gaussianization” which finds and exploits independence structures



in the data for high dimensional density estimation. For a random variable X € R”, we
define its Gaussianization transform to be an invertible and differential transform 7'(X)
such that the transformed variable T'(X) follows the standard Gaussian distribution:
T(X) ~ N(0,I)

It is clear that density estimates can be derived from Gaussianization transforms. We pro-
pose an iterative procedure which converges weakly in probability: at each iteration, the
data is first transformed to the least dependent coordinates and then each coordinate is
marginally Gaussianized by univariate techniques which are based on univariate density
estimation. At each iteration, the coordinates become less dependent in terms of the mu-
tual information, and the transformed data samples become more Gaussian in terms of the
Kullback-Leibler divergence. In fact, at each iteration, as far as the data is linearly trans-
formed to less dependent coordinates, the convergence result still holds. Our convergence
proof of Gaussianization is highly related to Huber’s convergence proof of projection pur-
suit [4].

Algorithmically, each Gaussianization iteration amounts to performing the linear indepen-
dent component analysis. Since the assumption of linear independent component analysis
may not be valid, the resulting linear transform does not necessarily make the coordinate
independent, however, it does make the coordinates as independent as possible. Therefore
the engine of our algorithm is the linear independent component analysis. We propose
an efficient EM algorithm which jointly estimates the linear transform and the marginal
univariate Gaussianization transform at each iteration. Our parametrization is identical to
the independence factor analysis proposed by Attias (1999) [1]. However, we apply the
variational method in the M-step, as in the semi-tied covariance algorithm proposed for
Gaussian mixture models by Gales (1999) [3].

2 Existence of Gaussianization

We first show the existence of Gaussianization transforms. Denote ¢(-) the probability
density function of the standard normal N(0,I); denote (-, i, £) the probability den-
sity function of N (p, X): denote ®(-) the cumulative distribution function (CDF) of the
standard normal.

2.1 Univariate Gaussianization

Univariate Gaussianization exists uniquely and can be derived from univariate density es-
timation. Let X € R! be the univariate variable. We assume that the density function of
X is strictly positive and differentiable. Let F(-) be the cumulative distribution function of
X. Then T'(-) is a Gaussianization transform if and only if it satisfies the following partial
differential equation:

p(x) = ST G5 -
It can be easily verified that the above partial differential equation has only two solutions:
+6~!(F(X)) ~ N(0,1) ()
In practice, the CDF F(-) is not available; it has to be estimated from the training data.
We choose to approximate it by Gaussian mixture models: p(z) = Z,f:l iz, pi, 07 );
equivalently we assume the CDF F(z) = Z§=1 m®(*4) where the parameters
{mi, i, o} can be estimated via maximum likelihood using the standard EM algorithm.
Therefore we can parameterize the Gaussianization transform as
- X
T(X) =& () mid(

i=1
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In practice there is an issue of model selection: we suggest to use model selection tech-
niques such as the Bayesian information criterion [6] to determine the number of Gaussians
I. Throughout the paper, we shall assume that univariate density estimation and univariate
Gaussianization can be solved by univariate Gaussian mixture models.

2.2 High Dimensional Gaussianization

However, the existence of high dimensional Gaussianization is non-trivial. We present
here a theoretical construction. For simplicity, we consider the two dimensional case. Let
X = (X, Xg;)T be the random variable. Gaussianization can be achieved in two steps.
We first marginally Gaussianize the first coordinate X and fix the second coordinate X,
unchanged; the transformed variable will have the following density

p(z1,22) = p(z1)p(z2|21) = ¢(21)P(T2|21) -
We then marginally Gaussian each conditional density p(-|z,) for each z;. Notice that the
marginal Gaussianization is different for different z;:

Tpy (X2) = '@-l(F-Im (X2)) -
Once all the conditional densities are marginally Gaussianized, we achieve joint Gaussian-
ization
p(z1,z2) = p(z1)p(22|71) = S(21)P(22) -
The existence of high dimensional Gaussianization can be proved by similar construction.

The above construction, however, is not practical since the marginal Gaussianization of the
conditional densities p(Xs = z2|X; = z1) requires estimation of the conditional densities
given all z;, which is impossible with finite samples. In the following sections, we shall
develop an iterative Gaussianization algorithm that is practical and also can be proved to
converge weakly.

High-dimensional Gaussianization is unique up to any invertible transforms which preserve

the measure on R” induced by the standard Gaussian distribution. Examples of such
transforms are orthogonal linear transforms and certain nontrivial Nonlinear transforms.

3 Gaussianization with Linear ICA Assumption

Let (x1,---,xn) be the i.i.d. samples from the random variable X € RP”. We as-
sume that there exist a linear transform Apyp such that the transformed variable Y =
(Y1,-++,Yp)T = AX has independent components: p(y1,--+,yp) = p(y1) -+ p(yp). In
this case, Gaussianization is reduced to linear ICA: we can first find the linear transfor-
mation A by linear independent component analysis, and then Gaussianize each individual
dimension of Y by univariate Gaussianization.

We parametrize the marginal Gaussianization by univariate Gaussian mixtures (2). This
amounts to model the coordinates of the transformed variable by univariate Gaussian mix-
tures: p(yqa) = Z{f__l Td,id(Yd, Pdi, ‘sz,e)- We would like to jointly optimize both the
linear transform A and the marginal Gaussianization parameters (m, y, o) via maximum
likelihood. In fact, this is the same parametrization as in Attias (1999) [1]. We point out
that modeling the coordinates after the linear transform as non-Gaussian distributions, for
which we assume univariate Gaussian mixtures are adequate, leads to ICA while as mod-
eling them as single Gaussians leads to PCA.

The joint estimation of the parameters can be computed via the EM algorithm. The auxil-
iary function which has to be maximized in the M-step has the following form:
N D Ii

1 — pai)?
Q(A,m,1,0) = Nlog|det(A)|+ Y Y Y wnallogma i~ log 2w§,,f—%l
n=1 d=1 i=1 st



where (wn, q4,;) are the posterior counts computed at the E-step. It can be easily shown that
the priors (m4,; can be easily updated and the means (p4,; can be entirely determined by
the linear transform A. However, updating the linear transform A and the variances (og,;)
does not have closed form solution and has to be solved iteratively by numerical methods.

Attias (1999) [1] proposed to optimize @ via gradient descent: at each iteration, one fixes
the linear transform and compute the Gaussian mixture parameters, then fixes the Gaussian
mixture parameters and update the linear transform via gradient descent using the so-called
natural gradient.

We propose an iterative algorithm as in Gales (1999) [3] for the M-step which does not
involve gradient descent and the nuisance and instability caused by of the step size param-
eter. At each iteration, we fix the linear transform A and update the variances (04,); we
then fix (¢4,;) and update each row of A with all the other rows of A fixed: updating each
row amounts to solving a system of linear equations. Our iterative scheme guarantees that
the auxiliary function @) to be increased at every iteration. Notice that each iteration in our
M-step updates the rows of the linear matrix A by solving D linear equations. Although
our iterative scheme may be slightly more expensive per iteration than standard numerical
optimization techniques such as Attias’ algorithm, in practice it converges after very few
iterations, as observed in Gales (1999) [3]. In contrast the numerical optimization scheme
may take an order of magnitude more iterations. In fact, in our experiments, our algorithm
converges much faster than Attias’s algorithm. Furthermore, our algorithm is stable since
each iteration is guaranteed to increase the likelihood.

The M-step in both Attias’ algorithm and our algorithm can be implemented efficiently
by storing and accessing the sufficient statistics. Typically in our M-steps, most of the
improvement on the likelihood comes in the first few iterations. Therefore we can stop
each M-step after, say one iteration of updating the parameters; even though the auxiliary
function is not optimized, but it is guaranteed to improve. Therefore we obtained the so-
called generalized EM algorithm. Attias (1999) [1] reported faster convergence of the
generalized EM algorithm than the standard EM algorithm.

4 Iterative Gaussianization

In this section we develop an iterative algorithm which Gaussianizes arbitrary random vari-
ables. At each iteration, the data is first transformed to the least dependent coordinates and
then each coordinate is marginally Gaussianized by univariate techniques which are based
on univariate density estimation. We shall show that transforming the data into the least
dependent coordinates can be achieved by linear independent component analysis. We also
prove the weak convergence result.

We define the negentropy ! of a random variable X = (X;,---,Xp)7 as the Kullback-
Leibler divergence between X and the standard Gaussian distribution. We define the
marginal negentropy to be Ja(X) = Eil J(X4). One can show that the negentropy
can be decomposed as the sum of the marginal negentropy and the mutual information:
J(X) = Ju(X) + I(X). Gaussianization is equivalent to finding an invertible transform
T (-) such that the negentropy of the transformed variable vanishes: J(T'(X)) =0.

For arbitrary random variable X € RP, we propose the following iterative Gaussianization
algorithm. Let X(® = X. At each iteration,

(A) Linearly transform the data: Y*) = AX(¥),

'We are abusing the terminology slightly: normally the negentropy of a random variable is defined
to be the Kullback-Leibler distance between itself and the Gaussian variable with the same mean and
covariance.



(B) Nonlinearly transform the data by marginal Gaussianization:
X+ — i +(Y#))

where the marginal Gaussianization ¥, , ,(-), which approximates the ideal
marginal Gaussianization ¥ (-), can be derived from univariate Gaussian mixtures
(2):

Ia (k)

- Y, — i
X‘(fk-i-l) =& 1(2 741 (—2 K )

i=1 Td
The parameters are chosen by minimizing the negentropy of the transformed variable
X (k+1).

(A,'ﬁ', ﬁ& 6-) = min J('I”T:#:B'(Ax)) % (3)
A,mop,0o

Thus, after each iteration, the transformed variable becomes as close as possible to the
standard Gaussian in the Kullback-Leibler distance.

First, the problem of minizing the negentropy (3) is equivalent to the maximum likelihood
problem for Gaussianization with linear ICA assumption in section 3, and thus can be
solved by the same efficient EM algorithm.

Second, since the data X(*) might not satisfy the linear ICA assumption, the optimal lin-
ear transform might not transform X (*¥) into independent coordinates. However, it does
transform X (¥) into the least dependent coordinates, since

J(X*+D) = Jpr (B(AXP)) + T(T(AXP®))) = 1(4AXR)) |
Further more, if the linear transform A is constrained to be orthogonal, then finding the

least dependent coordinates is equivalent to finding the marginally most non-Gaussian co-
ordinates, since

JX®)) = J(AX®)) = Jpr (AX®) + 1(AXB))
(notice that the negentropy is invariant under orthogonal transforms).

Therefore our iterative algorithm can be viewed as follows. At each iteration, the data is lin-
early transformed to the least dependent coordinates and then each coordinate is marginally
Gaussianized. In practice, after the first iteration, the algorithm finds linear transforms
which are almost orthogonal. Therefore one can also view practically that at each iteration,
the data is linearly transformed to the most marginally non-Gaussian coordinates and then
each coordinate is marginally Gaussianized.

For the sake of simplicity, we assume that we can achieve perfect marginal Gaussianization
WU(-) by ¥ u,0(-)), which is derived from univariate Gaussian mixtures. In fact, when the
number of Gaussians goes to infinity and the number of samples goes to infinity, one can
show that

Im¥,,, ="

Thus it suffices to analyze the ideal iterative Gaussianization
X®) = w(4XH)
where
A = argmin J(¥(AX®)) = argmin I(AX®)) .
Following Huber’s argument [4], we can show that
X®*) 5 N(0,1)

in the sense of weak convergence, i.e. the density function of X(¥) converges pointwise to
the density function of standard normal.
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Figure 1: Iterative Gaussianization on a synthetic circular data set

We point out that out iterative algorithm can be relaxed as follows. At each iteration, the
data can linearly transformed into coordinates which are less dependent, instead of into
coordinates which are the least dependent:

IX® — 1(AX®)) > [1(X® — iﬁfI(AX“‘))]

where the constant € > 0. We can show that this relaxed algorithm still converges weakly.

5 Examples

We demonstrate the process of our iterative Gaussianization algorithm through a very dif-
ficult two dimensional synthetic data set. The true underlying variable is circularly dis-
tributed: in the polar coordinate system, the angle is uniformly distributed; the radius fol-
lows a mixture of four non-overlapping Gaussians. We drew 1000 i.i.d. samples from this
distribution. We ran 8 iterations to Gaussianize the data set. Figure 4 displays the trans-
formed data set at each iteration. Clearly we see the transformed data gradually becomes
standard Gaussian.

Let X(® = X; assume that the iterative Gaussianization procedure converges after K
iterations, i.e. X(®) ~ N(0,I). Since the transforms at each iteration are invertible,
we can then compute Jacobian and obtain density estimation for X. The Jacobian can be
computed rapidly due to the chain rule. Figure 4 compares the Gaussianization density



estimate (8 iterations) and Gaussian mixture density estimate (40 Gaussians). Clearly we
see that the Gaussianization density estimate recovers the four circular structure; however,
the Gaussian mixture estimate lacks resolution.

6 Discussion

Gaussianization is closely connected with the exploratory projection pursuit algorithm pro-
posed by Friedman (1987) [2]. In fact we argue that our iterative Gaussianization procedure
can easily constrained as an efficient parametric solution of high dimensional projection
pursuit. Assume that we are interested in [-dimensional projections where 1 < [ < D. If
we constrain that at each iteration the linear transform has to be orthogonal, and only the
first [ coordinates of the transformed variable are marginally Gaussianized, then the itera-
tive Gaussianization algorithm achieves [ dimensional projection pursuit. The bottleneck
of Friedman’s high dimensional projection pursuit is to find the jointly most non-Gaussian
projection and to jeintly Gaussianize that projection. In contrast, our algorithm finds the
most marginally non-Gaussian projection and marginally Gaussianize that projection; it
can be computed by an efficient EM algorithm.

We argue that Gaussianization density estimation indeed alleviates the problem of the curse
of dimensionality. At each iteration, the effect of the curse of dimensionality is solely on
finding a linear transform such that the transformed coordinates are less dependent, which
is a relatively much easier problem than the original problem of high dimensional density
estimation itself; after the linear transform, the marginal Gaussianization can be derived
from univariate density estimation, which has nothing to do with the curse of dimension-
ality. Hwang 1994 [5] performed extensive comparative study among the following three
popular density estimates: one dim projection pursuit density estimates (a special case of
our iterative Gaussianization algorithm), adaptive kernel density estimates and radial basis
function density estimates; he concluded that projection pursuit density estimates outper-
form in most data set.

We are currently experimenting with application of Gaussianization density estimation in
automatic speech and speaker recognition.
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