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Abstract 

We consider the existence of efficient algorithms for learning the 
class of half-spaces in ~n in the agnostic learning model (Le., mak­
ing no prior assumptions on the example-generating distribution). 
The resulting combinatorial problem - finding the best agreement 
half-space over an input sample - is NP hard to approximate to 
within some constant factor. We suggest a way to circumvent this 
theoretical bound by introducing a new measure of success for such 
algorithms. An algorithm is IL-margin successful if the agreement 
ratio of the half-space it outputs is as good as that of any half-space 
once training points that are inside the IL-margins of its separating 
hyper-plane are disregarded. We prove crisp computational com­
plexity results with respect to this success measure: On one hand, 
for every positive IL, there exist efficient (poly-time) IL-margin suc­
cessful learning algorithms. On the other hand, we prove that 
unless P=NP, there is no algorithm that runs in time polynomial 
in the sample size and in 1/ IL that is IL-margin successful for all 
IL> O. 

1 Introduction 

We consider the computational complexity of learning linear perceptrons for arbi­
trary (Le. non -separable) data sets. While there are quite a few perceptron learning 
algorithms that are computationally efficient on separable input samples, it is clear 
that 'real-life' data sets are usually not linearly separable. The task of finding a lin­
ear perceptron (i.e. a half-space) that maximizes the number of correctly classified 
points for an arbitrary input labeled sample is known to be NP-hard. Furthermore, 
even the task of finding a half-space whose success rate on the sample is within 
some constant ratio of an optimal one is NP-hard [1]. 

A possible way around this problem is offered by the support vector machines 
paradigm (SVM) . In a nutshell, the SVM idea is to replace the search for a linear 
separator in the feature space of the input sample, by first embedding the sample 
into a Euclidean space of much higher dimension, so that the images of the sample 
points do become separable, and then applying learning algorithms to the image 
of the original sample. The SVM paradigm enjoys an impressive practical success, 
however, it can be shown ([3]) that there are cases in which such embeddings are 



bound to require high dimension and allow only small margins, which in turn entails 
the collapse of the known generalization performance guarantees for such learning. 

We take a different approach. While sticking with the basic empirical risk mini­
mization principle, we propose to replace the worst-case-performance analysis by an 
alternative measure of success. The common definition of the approximation ratio 
of an algorithm, requires the profit of an algorithm to remain within some fixed 
ratio from that of an optimal solution for all inputs, we allow the relative quality 
of our algorithm to vary between different inputs. For a given input sample, the 
number of points that the algorithm's output half-space should classify correctly 
relates not only to the success rate of the best possible half-space, but also to the 
robustness of this rate to perturbations of the hyper-plane. This new success re­
quirement is intended to provide a formal measure that, while being achievable by 
efficient algorithms, retains a guaranteed quality of the output 'whenever possible'. 

The new success measure depends on a margin parameter p,. An algorithm is 
called p,-margin successful if, for any input labeled sample, it outputs a hypothesis 
half-space that classifies correctly as many sample points as any half-space can 
classify correctly with margin p, (that is, discounting points that are too close to 
the separating hyper-plane). 

Consequently, a p,-margin successful algorithm is required to output a hypothesis 
with close-to-optimal performance on the input data (optimal in terms of the num­
ber of correctly classified sample points), whenever this input sample has an optimal 
separating hyper-plane that achieves larger-than-p, margins for most of the points 
it classifies correctly. On the other hand, if for every hyper-plane h that achieves 
close-to-maximal number of correctly classified input points, a large percentage of 
the correctly classified points are close to h's boundary, then an algorithm can settle 
for a relatively poor success ratio without violating the p,-margin success criterion. 

We obtain a crisp analysis of the computational complexity of perceptron learning 
under the p,-margin success requirement: 

On one hand, for every p, > 0 we present an efficient p,-margin 
successful learning algorithm (that is, an algorithm that runs in 
time polynomial in both the input dimension and the sample size). 
On the other hand, unless P=NP, no algorithm whose running time 
is polynomial in the sample size and dimension and in 1/ p, can be 
p,-margin successful for all p, > O. 

Note, that by the hardness of approximating linear perceptrons result of [1] cited 
above, for p, = 0, p,-margin learning is NP hard (even NP-hard to approximate). 

We conclude that the new success criterion for learning algorithms provides a rigor­
ous success guarantee that captures the constraints imposed on perceptron learning 
by computational efficiency requirements. 

It is well known by now that margins play an important role in the analysis of genera­
lization performance (or sample complexity). The results of this work demonstrate 
that a similar notion of margins is a significant component in the determination of 
the computational complexity of learning as well. 

Due to lack of space, in this extended abstract we skip all the technical proofs. 



2 Definition and Notation 

We shall be interested in the problem of finding a half-space that maximizes the 
agreement with a given labeled input data set. More formally, 

Best Separating Hyper-plane (BSH) Inputs are of the form (n, S), where n 2: 
1, and S = {(Xl, 17d, ... , (Xm, 17m)} is finite labeled sample, that is, each Xi 
is a point in lRn and each 17i is a member of {+1, -I}. A hyper-plane h(w, t), 
where w E lRn and t E lR, correctly classifies (X, 17) if sign( < wx > -t) = 17 
where < wx > denotes the dot product of the vectors w and x. 
We define the profit of h = h(w, t) on S as 

fi (hiS) = l{(xi,17i): h correctly classifies (Xi, 17i)}1 
pro t lSI 

The goal of a Best Separating Hyper-plane algorithm is to find a pair (w, t) 
so that profit(h(w, t)IS) is as large as possible. 

In the sequel, we refer to an input instance with parameter n as a n-dimensional 
input. 

On top of the Best Separating Hyper-plane problem we shall also refer to the fol­
lowing combinatorial optimization problems: 

Best separating Homogeneous Hyper-plane (BSHH) - The same problem 
as BSH, except that the separating hyper-plane must be homogeneous, 
that is, t must be set to zero. The restriction of BSHH to input points from 
sn-l, the unit sphere in lRn, is called Best Separating Hemisphere Problem 
(BSHem) in the sequel. 

Densest Hemisphere (DHem) Inputs are of the form (n, P), where n 2: 1 and 
P is a list of (not necessarily different) points from sn-l - the unit sphere 
in lRn. The problem is to find the Densest Hemisphere for P, that is, a 
weight vector wE lRn such that H+(w, 0) contains as many points from P 
as possible (accounting for their multiplicity in P). 

Densest Open Ball (DOB) Inputs are of the form (n, P), where n 2: 1, and P 
is a list of points from lRn. The problem is to find the Densest Open Ball of 
radius 1 for P, that is, a center z E lRn such that B(z, 1) contains as many 
points from P as possible (accounting for their multiplicity in P). 

For the sake of our proofs, we shall also have to address the following well studied 
optimization problem: 

MAX-E2-SAT Inputs are of the form (n, C), where n 2: 1 and C is a collection of 
2-clauses over n Boolean variables. The problem is to find an assignment 
a E {O, l}n satisfying as many 2-clauses of C as possible. 

More generally, a maximization problem defines for each input instance 1 a set 
of legal solutions, and for each (instance, legal-solution) pair (I, a), it defines 
profit (I, a) E lR+ - the profit of a on I. 

For each maximization problem II and each input instance 1 for II, optrr (I) denotes 
the maximum profit that can be realized by a legal solution for I. Subscript II is 
omitted when this does not cause confusion. The profit realized by an algorithm A 
on input instance 1 is denoted by A(I). The quantity 

opt (I) - A(I) 
opt (I) 



is called the relative error of algorithm A on input instance I. A is called 0-
approximation algorithm for II, where 0 E R+, if its relative error on I is at most 0 
for all input instances I. 

2.1 The new notion of approximate optimization: JL-margin 
approximation 

As mentioned in the introduction, we shall discuss a variant of the above common 
notion of approximation for the best separating hyper-plane problem (as well as for 
the other geometric maximization problems listed above). The idea behind this new 
notion, that we term 'JL-margin approximation', is that the required approximation 
rate varies with the structure of the input sample. When there exist optimal solu­
tions that are 'stable', in the sense that minor variations to these solutions will not 
effect their cost, then we require a high approximation ratio. On the other hand, 
when all optimal solutions are 'unstable' then we settle for lower approximation 
ratios. 

The following definitions focus on separation problems, but extend to densest set 
problems in the obvious way. 

Definition 2.1 Given a hypothesis class 11. = Un lin , where each li n is a collection 
of subsets of Rn, and a parameter JL ~ 0, 

• A margin function is a function M : Un(lin x Rn) r-+ R+. That is, given 
a hypothesis h C Rn and a point x E Rn, M (h, x) is a non-negative real 
number - the margin of x w. r. t. h. In this work, in most cases M (h, x) 
is the Euclidean distance between x and the boundary of h, normalized by 
IIxl12 and, for linear separators, by the 2-norm of the hyper-plane h as well. 

• Given a finite labeled sample S and a hypothesis h E li n , the profit realized 
by h on S with margin JL is 

profit(hIS, JL) = I{(Xi,1Ji): h correctly classifies (Xi,1Ji) and M(h, Xi) ~ JL} I 
lSI 

• For a labeled sample S, let optl-'(S) ~f maxhEl£(profit(hIS,JL)) 

• h E lin is a JL-margin approximation for S w.r.t. 11. if profit(hIS) > 
optl-' (S). 

• an algorithm A is JL-successful for 11. if for every finite n-dimensional input 
S it outputs A(S) E lin which is a JL-margin approximation for S w.r.t. 11.. 

• Given any of the geometric maximization problem listed above, II, its JL­
relaxation is the problem of finding, for each input instance of II a JL-margin 
approximation. For a given parameter JL > 0, we denote the JL-relaxation 
of a problem II by II[JL]. 

3 Efficient J.1, - margin successful learning algorithms 

Our Hyper-plane learning algorithm is based on the following result of Ben-David, 
Eiron and Simon [2] 

Theorem 3.1 For every (constant) JL > 0, there exists a JL-margin successful poly­
nomial time algorithm AI-' for the Densest Open Ball Problem. 



We shall now show that the existence of a J.L-successful algorithm for Densest Open 
Balls implies the existence of J.L-successful algorithms for Densest Hemispheres and 
Best Separating Homogeneous Hyper-planes. Towards this end we need notions of 
reductions between combinatorial optimization problems. The first definition, of 
a cost preserving polynomial reduction, is standard, whereas the second definition 
is tailored for our notion of J.L-margin success. Once this, somewhat technical, 
preliminary stage is over we shall describe our learning algorithms and prove their 
performance guarantees. 

Definition 3.2 Let II and II' be two maximization problems. A cost preserving 
polynomial reduction from II to II', written as II:S~~III' consists of the following 
components: 

• a polynomial time computable mapping which maps input instances of II to 
input instances of II', so that whenever I is mapped to I', opt( I') ~ opt( I). 

• for each I, a polynomial time computable mapping which maps each legal 
solutions (J' for I' to a legal solution (J for I having the same profit that (J' • 

The following result is evident: 

Lemma 3.3 If II:S~~III' and there exists a polynomial time c5-approximation algo­
rithm for II', then there exists a polynomial time c5-approximation algorithm for 
II. 

Claim 3.4 BSH<CPl BSHH<cP1BSHem<cp lDHem. -po -po -po 

Proof Sketch: By adding a coordinate one can translate hyper-planes to homoge­
neous hyper-planes (i.e., hyper-planes that pass through the origin). To get from the 
homogeneous hyper-planes separating problem to the best separating hemisphere 
problem, one applies the standard scaling trick. To get from there to the densest 
hemisphere problem, one applies the standard reflection trick. • 

We are interested in J.L-relaxations of the above problems. We shall therefore in­
troduce a slight modification of the definition of a cost-preserving reduction which 
makes it applicable to J.L-relaxed problems. 

Definition 3.5 Let II and II' be two geometric maximization problems, and 
J.L, J.L' > O. A cost preserving polynomial reduction from II[J.Ll to II' [J.L']' written 
as II[J.Ll:S~~III'[J.L'l, consists of the following components: 

• a polynomial time computable mapping which maps input instances of II 
to input instances of II' , so that whenever I is mapped to I', opt", (I') ~ 
opt" (I). 

• for each I, a polynomial time computable mapping which maps each legal 
solutions (J' for I' to a legal solution (J for I having the same profit that (J' • 

The following result is evident: 

Lemma 3.6 If II[J.Ll:S~~III'[J.L'l and there exists a polynomial time J.L-margin suc­
cessful algorithm for II, then there exists a polynomial time J.L'-margin successful 
algorithm for II' . 



To conclude our reduction of the Best Separating Hyper-plane problem to the Dens­
est open Ball problem we need yet another step. 

Lemma 3.8 For p, > 0, let p,' = 1- J1- p,2 and p," = p,2/2. Then, 

DHem[p,]~~~IDOB[p,I]~~~IDOB[p,"] 

The proof is a bit technical and is deferred to the full version of this paper. 

Applying Theorem 3.1 and the above reductions, we therefore get: 

Theorem 3.9 For each (constant) p, > 0, there exists a p,-successful polynomial 
time algorithm AIL for the Best Separating Hyper-plane problem. 

Clearly, the same result holds for the problems BSHH, DHem and BSHem as well. 

Let us conclude by describing the learning algorithms for the BSH (or BSHH) 
problem that results from this analysis. 

We construct a family (AkhEN of polynomial time algorithms. Given a labeled 
input sample S, the algorithm Ak exhaustively searches through all subsets of S of 
size ~ k. For each such subset, it computes a hyper-plane that separates the positive 
from the negative points of the subset with maximum margin (if a separating hyper­
plane exists). The algorithm then computes the number of points in S that each 
of these hyper-planes classifies correctly, and outputs the one that maximizes this 
number. 

In [2] we prove that our Densest Open Ball algorithm is p,-successful for p, = 
1/~ (when applied to all k-size subsamples). Applying Lemma 3.8, we may 
conclude for problem BSH that, for every k, Ak is (4/(k-1))1/4-successful. In other 
words: in order to be p,-successful, we must apply algorithm Ak for k = 1 + 14/ p,4l. 

4 NP-Hardness Results 

We conclude this extended abstract by proving some NP-hardness results that com­
plement rather tightly the positive results of the previous section. We shall base 
our hardness reductions on two known results. 

Theorem 4.1 [Hiistad, [4]] Assuming P;6NP, for any a < 1/22, there is no 
polynomial time a-approximation algorithm for MAX-E2-SAT. 

Theorem 4.2 [Ben-David, Eiron and Long, [1]] Assuming P;6NP, for any 
a < 3/418, there is no polynomial time a-approximation algorithm for BSH. 

Applying Claim 3.4 we readily get: 

Corollary 4.3 Assuming P;6NP, for any a < 3/418, there is no polynomial time 
a-approximation algorithm for BSHH, BSHem, or DHem. 

So far we discussed p,-relaxations only for a value of p, that was fixed regardless 
of the input dimension. All the above discussion extends naturally to the case of 
dimension-dependent margin parameter. Let p, denote a sequence (P,l, ... , P,n, . . . ). 

For a problem TI, its p,-relaxation refers to the problem obtained by considering the 
margin value P,n for inputs of dimension n. A main tool for proving hardness is 



the notion of p-Iegal input instances. An n-dimensional input sample S is called 
p-Iegal if the maximal profit on S can be achieved by a hypothesis h* that satisfies 
profit(h* IS) = profit(h* IS, ILn). Note that the p-relaxation of a problem is NP­
hard, if the problem restricted to p-Iegal input instances is NP-hard. 

Using a special type of reduction, that due to space constrains we cannot elaborate 
here, we can show that Theorem 4.1 implies the following: 

Theorem 4.4 1. Assuming P;6NP, there is no polynomial time 1/198-
approximation for BSH even when only 1/v'36n-legal input instances are 
allowed. 

2. Assuming P;6NP, there is no polynomial time 1/198-approximation for 
BSHH even when only 1/ y'45(n + I)-legal input instances are allowed. 

Using the standard cost preserving reduction chain from BSHH via BSHem to 
DHem, and noting that these reductions are obviously margin-preserving, we get 
the following: 

Corollary 4.5 Let S be one of the problems BSHH, BSHem, or DHem, and let p 
be given by ILn = 1/ y'45(n + 1). Unless P=NP, there exists no polynomial time 
1/198-approximation for S[p]. In particular, the p-relaxations of these problems are 
NP-hard. 

Since the 1/ y'45(n + I)-relaxation of the Densest Hemisphere Problem is NP-hard, 
applying Lemma 3.8 we get immediately 

Corollary 4.6 The 45(~+1) -relaxation of the Densest Ball Problem is NP-hard. 

Finally note that Corollaries 4.4, 4.5 and 4.6 rule out the existence of "strong 
schemes" (AI') with running time of AI' being also polynomial in 1/1.£. 
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