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Abstract 

The product of experts learning procedure [1] can discover a set of 
stochastic binary features that constitute a non-linear generative model of 
handwritten images of digits. The quality of generative models learned 
in this way can be assessed by learning a separate model for each class of 
digit and then comparing the unnormalized probabilities of test images 
under the 10 different class-specific models. To improve discriminative 
performance, it is helpful to learn a hierarchy of separate models for each 
digit class. Each model in the hierarchy has one layer of hidden units and 
the nth level model is trained on data that consists of the activities of the 
hidden units in the already trained (n - l)th level model. After train­
ing, each level produces a separate, unnormalized log probabilty score. 
With a three-level hierarchy for each of the 10 digit classes, a test image 
produces 30 scores which can be used as inputs to a supervised, logis­
tic classification network that is trained on separate data. On the MNIST 
database, our system is comparable with current state-of-the-art discrimi­
native methods, demonstrating that the product of experts learning proce­
dure can produce effective generative models of high-dimensional data. 

1 Learning products of stochastic binary experts 

Hinton [1] describes a learning algorithm for probabilistic generative models that are com­
posed of a number of experts. Each expert specifies a probability distribution over the 
visible variables and the experts are combined by multiplying these distributions together 
and renormalizing. 

(1) 

where d is a data vector in a discrete space, Om is all the parameters of individual model 
m, Pm(dIOm) is the probability of d under model m, and c is an index over all possible 
vectors in the data space. 

A Restricted Boltzmann machine [2, 3] is a special case of a product of experts in which 
each expert is a single, binary stochastic hidden unit that has symmetrical connections to 
a set of visible units, and connections between the hidden units are forbidden. Inference 
in an RBM is much easier than in a general Boltzmann machine and it is also much easier 



than in a causal belief net because there is no explaining away. There is therefore no need 
to perform any iteration to determine the activities of the hidden units. The hidden states, 
Sj , are conditionally independent given the visible states, Si, and the distribution of Sj is 
given by the standard logistic function : 

1 
p(Sj = 1) = (2) 

1 + exp( - Li WijSi) 

Conversely, the hidden states of an RBM are marginally dependent so it is easy for an RBM 
to learn population codes in which units may be highly correlated. It is hard to do this in 
causal belief nets with one hidden layer because the generative model of a causal belief net 
assumes marginal independence. 

An RBM can be trained using the standard Boltzmann machine learning algorithm which 
follows a noisy but unbiased estimate of the gradient of the log likelihood of the data. 
One way to implement this algorithm is to start the network with a data vector on the 
visible units and then to alternate between updating all of the hidden units in parallel and 
updating all of the visible units in parallel. Each update picks a binary state for a unit 
from its posterior distribution given the current states of all the units in the other set. If 
this alternating Gibbs sampling is run to equilibrium, there is a very simple way to update 
the weights so as to minimize the Kullback-Leibler divergence, QOIIQoo, between the data 
distribution, QO, and the equilibrium distribution of fantasies over the visible units, Qoo, 
produced by the RBM [4]: 

flWij oc <SiSj>QO - <SiSj>Q~ (3) 

where < SiSj >Qo is the expected value of SiSj when data is clamped on the visible units 
and the hidden states are sampled from their conditional distribution given the data, and 
<SiSj>Q~ is the expected value of SiSj after prolonged Gibbs sampling. 

This learning rule does not work well because it can take a long time to approach thermal 
equilibrium and the sampling noise in the estimate of <SiSj>Q~ can swamp the gradient. 
[1] shows that it is far more effective to minimize the difference between QOllQoo and 
Q111Qoo where Q1 is the distribution of the one-step reconstructions of the data that are 
produced by first picking binary hidden states from their conditional distribution given the 
data and then picking binary visible states from their conditional distribution given the 
hidden states. The exact gradient of this "contrastive divergence" is complicated because 
the distribution Q1 depends on the weights, but [1] shows that this dependence can safely be 
ignored to yield a simple and effective learning rule for following the approximate gradient 
of the contrastive divergence: 

flWij oc <SiSj>QO - <SiSj>Ql (4) 

For images of digits, it is possible to apply Eq. 4 directly if we use stochastic binary pixel 
intensities, but it is more effective to normalize the intensities to lie in the range [0,1] 
and then to use these real values as the inputs to the hidden units. During reconstruction, 
the stochastic binary pixel intensities required by Eq. 4 are also replaced by real-valued 
probabilities. Finally, the learning rule can be made less noisy by replacing the stochastic 
binary activities of the hidden units by their expected values. So the learning rule we 
actually use is: 

flWij oc <PiPj>QO - <PiPj>Ql (5) 
Stochastically chosen binary states of the hidden units are still used for computing the 
probabilities of the reconstructed pixels. This prevents each real-valued hidden probability 
from conveying more than 1 bit of information to the reconstruction. 

2 The MNIST database 

MNIST, a standard database for testing digit recognition algorithms, is available at 
http://www.research. att. com/~yann /ocr/mnist / index.html.MNIST 



METHOD % ERRORS 
Linear classifier (I-layer NN) 12.0 
K-nearest-neighbors, Euclidean 5.0 
1000 RBF + linear classifier 3.6 
Best Back-Prop: 3-layer NN, 500+ 150 hidden units 2.95 

Reduced Set SVM deg 5 polynomial 1.0 
LeNet-l [with 16x16 input] 1.7 
LeNet-5 0.95 

Product of Experts (separate 3-layer net for each model) 1.7 

Table 1: Performance of various learning methods on the MNIST test set. 

has 60,000 training images and 10,000 test images. Images are highly variable in style but 
are size-normalized and translated so that the center of gravity of their intensity lies at the 
center of a fixed-size image of 28 by 28 pixels. 

A number of well-known learning algorithms have been run on the MNIST database[5], so 
it is easy to assess the relative performance of a novel algorithm. Some of the experiments 
in [5] included deskewing images or augmenting the training set with distorted versions 
of the original images. We did not use deskewing or distortions in our main experiments, 
so we only compare our results with other methods that did not use them. The results in 
Table 1 should be treated with caution. Some attempts to replicate the degree 5 polynomial 
SVM have produced slightly higher error rates of 1.4% [6] and standard backpropagation 
can be carefully tuned to achieve under 2% (John Platt, personal communication). 

Table 1 shows that it is possible to achieve a result that is comparable with the best dis­
criminative techniques by using multiple PoE models of each digit class to extract scores 
that represent unnormalized log probabilities. These scores are then used as the inputs to 
a simple logistic classifier. The fact that a system based on generative models can come 
close to the very best discriminative systems suggests that the generative models are doing 
a good job of capturing the distributions. 

3 Training the individual PoE models 

The MNIST database contains an average of 6,000 training examples per digit, but these 
examples are unevenly distributed among the digit classes. In order to simplify the research 
we produced a balanced database by using only 5,400 examples of each digit. The first 
4,400 examples were the unsupervised training set used for training the individual PoE 
models. The remaining examples of each of the 10 digits constituted the supervised training 
set used for training the logistic classification net that converts the scores of all the PoE 
models into a classification. 

The original intensity range in the MNIST images was 0 to 255. This was normalized to 
the range 0 to 1 so that we could treat intensities as probabilities. The normalized pixel 
intensities were used as the initial activities of the 784 visible units corresponding to the 28 
by 28 pixels. The visible units were fully connected to a single layer of hidden units. The 
weights between the input and hidden layer were initialized to small, zero-mean, Gaussian­
distributed, random values. The 4,400 training examples were divided into 44 mini-batches. 
One epoch of learning consisted of a pass through all 44 mini batches in fixed order with the 
weights being updated after each minibatch. We used a momentum method with a small 
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Figure 1: The areas of the blobs show the mean 
goodness of validation set digits using only the 
first-level models with 500 hidden units (white 
is positive). A different constant is added to 
all the goodness scores of each model so that 
rows sum to zero. Successful discrimination 
depends on models being better on their own 
class than other models are. The converse is not 
true: models can be better reconstructing other, 
easier classes of digits than their own class. 

Figure 2: Cross reconstruction of 7s and 9s 
with models containing 25 hidden units (top) 
and 100 hidden units (bottom). The central 
horizontal line in each block contains origi-
nals, and the lines above and below are re-
constructions by the 7s and 9s models re-
spectively. Both models produce stereotyped 
digits in the small net and much better re-
constructions in the large one for both the 
digit classes. The 9s model sometimes tries 
to close the loop in 7s, and the 7s model tries 
to open the loop in 9s. 

amount of weight decay, so the change in a weight after the tth minibatch was: 

~wL = J..L~wtt + 0.1 ((PiPj)Q~ - (PiPj)Q: - o.OOOlwL) (6) 

where Q~ and Qt are averages over the data or the one-step reconstructions for minibatch 
t, and the momentum, J..L, was 0 for the first 50 weight changes and 0.9 thereafter. The 
hidden and visible biases, bi and bj , were initialized to zero. Their values were similarly 
altered (by treating them like connections to a unit that was always on) but with no weight 
decay. 

Rather than picking one particular number of hidden units, we trained networks with vari­
ous different numbers of units and then used discriminative performance on the validation 
set to decide on the most effective number of hidden units. The largest network was the 
best, even though each digit model contains 392,500 parameters trained on only 4,400 im­
ages. The receptive fields learned by the hidden units are quite local. Since the hidden units 
are fully connected and have random initial weights the learning procedure must infer the 
spatial proximity of pixels from the statistics of their joint activities. Figure 1 shows the 
mean goodness scores of all 10 models on all 10 digit classes. 

Figure 2 shows reconstructions produced by the bottom-level models on previously unseen 
data from the digit class they were trained on and also on data from a different digit class. 
With 500 hidden units, the 7s model is almost perfect at reconstructing 9s. This is be­
cause a model gets better at reconstructing more or less any image as its set of available 
features becomes more varied and more local. Despite this, the larger networks give better 
discriminative information. 



3.1 Multi-layer models 

Networks that use a single layer of hidden units and do not allow connections within a 
layer have some major advantages over more general networks. With an image clamped 
on the visible units, the hidden units are conditionally independent. So it is possible to 
compute an unbiased sample of the binary states of the hidden units without any iteration. 
This property makes PoE's easy to train and it is lost in more general architectures. If, for 
example, we introduce a second hidden layer that is symmetrically connected to the first 
hidden layer, it is no longer straightforward to compute the posterior expected activity of a 
unit in the first hidden layer when given an image that is assumed to have been generated 
by the multilayer model at thermal equilibrium. The posterior distribution can be computed 
by alternating Gibbs sampling between the two hidden layers, but this is slow and noisy. 

Fortunately, if our ultimate goal is discrimination, there is a computationally convenient 
alternative to using a multilayer Boltzmann machine. Having trained a one-hidden-layer 
PoE on a set of images, it is easy to compute the expected activities of the hidden units on 
each image in the training set. These hidden activity vectors will themselves have interest­
ing statistical structure because a PoE is not attempting to find independent causes and has 
no implicit penalty for using hidden units that are marginally highly correlated. So we can 
learn a completely separate PoE model in which the activity vectors of the hidden units are 
treated as the observed data and a new layer of hidden units learns to model the structure 
of this "data". It is not entirely clear how this second-level PoE model helps as a way of 
modelling the original image distribution, but it is clear that if a first-level PoE is trained on 
images of 2's, we would expect the vectors of hidden activities to be be very different when 
it is presented with a 3, even if the features it has learned are quite good at reconstructing 
the 3. So a second-level model should be able to assign high scores to the vectors of hidden 
activities that are typical of the 2 model when it is given images of 2's and low scores to 
the hidden activities of the 2 model when it is given images that contain combinations of 
features that are not normally present at the same time in a 2. 

We used a three-level hierarchy of PoE's for each digit class. The levels were trained 
sequentially and to simplify the research we always used the same number of hidden units 
at each level. We trained models of five different sizes with 25, 100, 200, 400, and 500 
hidden units per level. 

4 The logistic classification network 

An attractive aspect of PoE's is that it is easy to compute the numerator in Eq. 1 so it is 
easy to compute a goodness score which is equal to the log probability of a data vector 
up to an additive constant. Figure 3 show the goodness of the 7s and 9s models (the most 
difficult pair of digits to discriminate) when presented with test images of both 7s and 9s. 
It can be seen that a line can be passed that separates the two digit sets almost perfectly. It 
is also encouraging that all of the errors are close to the decision boundary, so there are no 
confident misclassifications. 

The classification network had 10 output units, each of which computed a logit, x, that was 
a linear function of the goodness scores, g, of the various PoE models, m, on an image, c. 
The probability assigned to class j was then computed by taking a "softmax" of the logits: 

exj 
Pc - ------0-

j - '" X C 
L..Jk e k 

xj = bj + Lg~Wmj (7) 
m 

There were 10 digit classes each with a three-level hierarchy of PoE models, so the classifi­
cation network had 30 inputs and therefore 300 weights and 10 output biases. Both weights 
and biases were initialized to zero. The weights were learned by a momentum version of 
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Figure 3: Validation set cross goodness results of (a) the first-level model and (b) the third­
level model of 7s and 9s. All models have 500 hidden units. The third-level models clearly 
give higher goodness scores for second-level hidden activities in their own hierarchy than 
for the hidden activities in the other hierarchy. 

gradient ascent in the log probability assigned to the correct class. Since there were only 
310 weights to train, little effort was devoted to making the learning efficient. 

~Wmj(t) = J-L~wmj(t-l) + 0.0002 Lg~(tj - pi) (8) 
c 

where tj is 1 if class j is the correct answer for training case c and 0 otherwise. The 
momentum J-L was 0.9. The biases were treated as if they were weights from an input that 
always had a value of 1 and were learned in exactly the same way. 

In each training epoch the weight changes were averaged over the whole supervised training 
setl . We used separate data for training the classification network because we expect the 
goodness score produced by a PoE of a given class to be worse and more variable on 
exemplars of that class that were not used to train the PoE and it is these poor and noisy 
scores that are relevant for the real, unseen test data. 

The training algorithm was run using goodness scores from PoE networks with different 
numbers of hidden units. The results in Table 2 show a consistent improvement in classifi­
cation error as the number of units in the hidden layers of each PoE increase. There is no 
evidence for over-fitting, even though large PoE's are very good at reconstructing images of 
other digit classes or the hidden activity vectors of lower-level models in other hierarchies. 
It is possible to reduce the error rate by a further 0.1 % by averaging together the goodness 
scores of corresponding levels of model hierarchies with 100 or more units per layer, but 
this model averaging is not nearly as effective as using extra levels. 

5 Model-based normalization 

The results of our current system are still not nearly as good as human performance. In 
particular, it appears the network has only a very limited understanding of image invari-

1 We held back part of the supervised training set to use as a validation set in determining the 
optimal number of epochs to train the classification net, but once this was decided we retrained on all 
the supervised training data for that number of epochs. 



Network size Learning epochs % Errors Table 2: MNIST test set error 
rate as a function of the number 
of hidden units per level. There 
is no evidence of overfitting even 
when over 250,000 parameters 
are trained on only 4,400 exam­
ples. 

25 25 3.8 
100 100 2.3 
200 200 2.2 
400 200 2.0 
500 500 1.7 

ances. This is not surprising since it is trained on prenormalized data. Dealing with image 
invariances better will be essential for approaching human performance. The fact that we 
are using generative models suggests an interesting way of refining the image normaliza­
tion. If the normalization of an image is slightly wrong we would expect it to have lower 
probability under the correct class-specific model. So we should be able to use the gradient 
of the goodness score to iteratively adjust the normalization so that the data fits the model 
better. Using x translation as an example, 

8C __ "" 8s i 8C 8C "" 
~ -8. = bi + ~ SjWji 

8x i 8x 8s i S. j 

where Si is the intensity of pixel i. 8si/8x is easily computed from the intensities of 
the left and right neighbors of pixel i and 8C / 8s i is just the top-down input to a pixel 
during reconstruction. Preliminary simulations by Yee Whye Teh on poorly normalized 
data show that this type of model-based renormalization improves the score of the correct 
model much more than the scores of the incorrect ones and thus eliminates most of the 
classification errors. 

Acknowledgments 

We thank Yann Le Cun, Mike Revow and members of the Gatsby Unit for helpful discus­
sions. This research was funded the Gatsby Charitable Foundation. 

References 

[1] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Technical Re­
port GeNU TR 2000-004, Gatsby Computational Neuroscience Unit, University College Lon­
don, 2000. 

[2] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In 
D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in 
the Microstructure of Cognition. Volume 1: Foundations. MIT Press, 1986. 

[3] Yoav Freund and David Haussler. Unsupervised learning of distributions of binary vectors using 
2-layer networks. In John E. Moody, Steve J. Hanson, and Richard P. Lippmann, editors, Ad­
vances inNeural1nformation Processing Systems, volume 4, pages 912- 919. Morgan Kaufmann 
Publishers, Inc., 1992. 

[4] G. E. Hinton and T. J. Sejnowski. Learning and relearning in boltzmann machines. In D. E. 
Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the 
Microstructure of Cognition. Volume 1: Foundations. MIT Press, 1986. 

[5] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, 1. Guyon, 
U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of learning algorithms for 
handwritten digit recognition. In F. Fogelman and P. Gallinari, editors, International Conference 
on Artificial Neural Networks, pages 53- 60, Paris, 1995. EC2 & Cie. 

[6] Chris J.C. Burges and B. SchOlkopf. Improving the accuracy and speed of support vector ma­
chines. In Michael C. Mozer, Michael 1. Jordan, and Thomas Petsche, editors, Advances in 
Neural Information Processing Systems, volume 9, page 375. The MIT Press, 1997. 


